首页> 外文学位 >A framework for tumor segmentation and interactive immersive visualization of medical image data for surgical planning.
【24h】

A framework for tumor segmentation and interactive immersive visualization of medical image data for surgical planning.

机译:肿瘤分割和医学图像数据的交互式沉浸式可视化框架,用于外科手术计划。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents the framework for analyzing and visualizing digital medical images. Two new segmentation methods have been developed: a probability based segmentation algorithm, and a segmentation algorithm that uses a fuzzy rule based system to generate "similarity" values for segmentation. A visualization software application has also been developed to effectively view and manipulate digital medical images on a desktop computer as well as in an immersive environment.;For the probabilistic segmentation algorithm, image data are first enhanced by manually setting the appropriate window center and width, and if needed a sharpening or noise removal filter is applied. To initialize the segmentation process, a user places a seed point within the object of interest and defines a search region for segmentation. Based on the pixels' spatial and intensity properties, a probabilistic selection criterion is used to extract pixels with a high probability of belonging to the object. To facilitate the segmentation of multiple slices, an automatic seed selection algorithm was developed to keep the seeds in the object as its shape and/or location changes between consecutive slices.;The second segmentation method, a new segmentation method using a fuzzy rule based system to segment tumors in a three-dimensional CT data was also developed. To initialize the segmentation process, the user selects a region of interest (ROI) within the tumor in the first image of the CT study set. Using the ROI's spatial and intensity properties, fuzzy inputs are generated for use in the fuzzy rules inference system. Using a set of predefined fuzzy rules, the system generates a defuzzified output for every pixel in terms of similarity to the object. Pixels with the highest similarity values are selected as tumor. This process is automatically repeated for every subsequent slice in the CT set without further user input, as the segmented region from the previous slice is used as the ROI for the current slice. This creates a propagation of information from the previous slices, used to segment the current slice. The membership functions used during the fuzzification and defuzzification processes are adaptive to the changes in the size and pixel intensities of the current ROI. The proposed method is highly customizable to suit different needs of a user, requiring information from only a single two-dimensional image.;Segmentation results from both algorithms showed success in segmenting the tumor from seven of the ten CT datasets with less than 10% false positive errors and five test cases with less than 10% false negative errors. The consistency of the segmentation results statistics also showed a high repeatability factor, with low values of inter- and intra-user variability for both methods.;The visualization software developed is designed to load and display any DICOM/PACS compatible three-dimensional image data for visualization and interaction in an immersive virtual environment. The software uses the open-source libraries DCMTK: DICOM Toolkit for parsing of digital medical images, Coin3D and SimVoleon for scenegraph management and volume rendering, and VRJuggler for virtual reality display and interaction. A user can apply pseudo-coloring in real time with multiple interactive clipping planes to slice into the volume for an interior view. A windowing feature controls the tissue density ranges to display. A wireless gamepad controller as well as a simple and intuitive menu interface control user interactions. The software is highly scalable as it can be used on a single desktop computer to a cluster of computers for an immersive multi-projection virtual environment. By wearing a pair of stereo goggles, the surgeon is immersed within the model itself, thus providing a sense of realism as if the surgeon is "inside" the patient.;The tools developed in this framework are designed to improve patient care by fostering the widespread use of advanced visualization and computational intelligence in preoperative planning, surgical training, and diagnostic assistance. Future work includes further improvements to both segmentation methods with plans to incorporate the use of deformable models and level set techniques to include tumor shape features as part of the segmentation criteria. For the surgical planning components, additional controls and interactions with the simulated endoscopic camera and the ability to segment the colon or a selected region of the airway for a fixed-path navigation as a full virtual endoscopy tool will also be implemented. (Abstract shortened by UMI.).
机译:本文提出了数字医学图像分析与可视化的框架。已经开发了两种新的分割方法:基于概率的分割算法,以及使用基于模糊规则的系统生成用于分割的“相似”值的分割算法。还开发了可视化软件应用程序,以在台式计算机以及身临其境的环境中有效地查看和操作数字医学图像。对于概率分割算法,首先通过手动设置适当的窗口中心和宽度来增强图像数据,如果需要,可以使用锐化或除噪滤镜。为了初始化分割过程,用户将种子点放置在感兴趣的对象内,并定义用于分割的搜索区域。基于像素的空间和强度属性,使用概率选择标准来提取具有高概率属于对象的像素。为了促进多个切片的分割,开发了一种自动种子选择算法,以在种子的形状和/或位置在连续切片之间变化时将种子保留在对象中。第二种分割方法,一种使用基于模糊规则的系统的新分割方法还开发了在三维CT数据中分割肿瘤的方法。为了初始化分割过程,用户在CT研究集的第一幅图像中选择肿瘤内的感兴趣区域(ROI)。利用ROI的空间和强度属性,可以生成模糊输入以用于模糊规则推理系统。使用一组预定义的模糊规则,系统会根据与对象的相似度为每个像素生成一个去模糊化的输出。选择具有最高相似度值的像素作为肿瘤。对于CT集中的每个后续切片,将自动重复此过程,而无需进一步的用户输入,因为前一切片的分割区域被用作当前切片的ROI。这会创建来自先前切片的信息传播,用于分割当前切片。在模糊化和反模糊化过程中使用的隶属度函数可适应当前ROI大小和像素强度的变化。所提出的方法是高度可定制的,以适应用户的不同需求,仅需要来自单个二维图像的信息。两种算法的分割结果均显示成功地从10个CT数据集中的7个中分割出了肿瘤,假率低于10%正错误和五个测试案例,假负错误的发生率均低于10%。分割结果统计数据的一致性还显示出高重复性因子,两种方法的用户间和用户内变异性值均较低。开发的可视化软件旨在加载和显示任何DICOM / PACS兼容的三维图像数据在沉浸式虚拟环境中进行可视化和交互。该软件使用开源库DCMTK:用于解析数字医学图像的DICOM工具包,用于场景图管理和体积渲染的Coin3D和SimVoleon,以及用于虚拟现实显示和交互的VRJuggler。用户可以使用多个交互式剪切平面实时应用伪着色,以将其切成内部视图的体积。窗口功能控制要显示的组织密度范围。无线游戏手柄控制器以及简单直观的菜单界面可控制用户交互。该软件具有很高的可扩展性,因为它可以在单个台式计算机上使用,也可以在沉浸式多投影虚拟环境的计算机群集中使用。通过戴上一副立体护目镜,外科医生会沉浸在模型本身中,从而提供一种真实的感觉,就像外科医生在患者体内一样。;在此框架中开发的工具旨在通过促进患者的护理来改善患者的护理。在手术前的计划,手术培训和诊断协助中广泛使用高级可视化和计算智能。未来的工作包括对两种分割方法的进一步改进,并计划将可变形模型和水平集技术结合使用,以将肿瘤的形状特征作为分割标准的一部分。对于手术计划的组成部分,还将实现与模拟内窥镜相机的其他控件和交互作用,以及将结肠或气道的选定区域进行分段以进行固定路径导航的功能,以作为完整的虚拟内窥镜工具。 (摘要由UMI缩短。)。

著录项

  • 作者

    Foo, Jung Leng.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号