首页> 外文学位 >Synthesis and photophysical characterization of phosphorescent cyclometalated iridium(III) complexes and their use in organic light emitting devices.
【24h】

Synthesis and photophysical characterization of phosphorescent cyclometalated iridium(III) complexes and their use in organic light emitting devices.

机译:磷光环金属化铱(III)配合物的合成和光物理表征及其在有机发光器件中的用途。

获取原文
获取原文并翻译 | 示例

摘要

Organic light emitting devices (OLEDs) are a new type of display technology based on organic thin films. The materials that comprise these films must be able to meet certain criteria in order to be considered for these devices. The work presented here describes the development of novel phosphorescent materials along with their photophysical characterization and applications in OLEDs. Chapter 1 illustrates how these devices work, the materials used in these devices, and how the properties of these materials affect device performance. Chapter 2 describes the synthesis and characterization of high energy phosphorescent materials from Ir(III) complexes with cyclometalated pyrazolyl-based and N-heterocyclic carbene (NHC)-based ligands. Chapter 3 portrays the synthesis and characterization of heteroleptic Ir(III) complexes consisting of two chromophoric cyclometalating (C.;N) ligands and a singlehigh energy ancillary ligand (L.;X). The incorporation of high energy ancillaryligands such as pmi on bis-cyclometalated Ir(ppz)2 does not lead to emission at room temperature. However, the replacement of the ppz chromophoric ligands with carbazolyl, diphenylamino, or fluorenylpyrazolyl-based chromophoric ligands leads to emission at room temperature. In Chapter 3, more reducible flz-based Ir(III) complexes have also been synthesized by incorporation of a high triplet energy, more reducible ancillary ligand. Their electrochemical, spectroscopic, and electroluminescent properties are discussed. Chapter 4 discusses the synthesis and photophysics of triscyclometalated Ir(III) benzoquinoline complexes, Ir(bzq)3. White phosphorescent OLEDs with mer -Ir(bzq)3 as the broad band emitter have been fabricated with a maximum external quantum efficiency of ∼12%. In Chapter 5, we utilize extensive temperature dependent lifetime studies to estimate the zero-field splitting (ZSF) and ligand-field (LF) state energies for blue and near-UV phosphorescent cyclometalated Ir(III) complexes. This is the first time we can identify where the LF state is for blue cyclometalated Ir(III) complexes. The thermal population of the LF state is most likely one of the deactivation processes that blue cyclometalated Ir(III) complexes exhibit. From the temperature dependent study, we learn that the activation energies (Ea) needed to thermally populate LF state and the nonradiative decay rate constant (k nr(T)) are important factors that affect the quantum efficiencies of high energy phosphorescent cyclometalated Ir(III) complexes.
机译:有机发光器件(OLED)是一种基于有机薄膜的新型显示技术。构成这些薄膜的材料必须能够满足某些标准,才能考虑将其用于这些设备。本文介绍的工作描述了新型磷光材料的发展以及它们的光物理特性和在OLED中的应用。第1章说明了这些设备的工作方式,这些设备中使用的材料以及这些材料的性能如何影响设备性能。第2章介绍了由具有环金属化吡唑基和N-杂环卡宾(NHC)配体的Ir(III)配合物合成和表征高能磷光材料。第三章描述了由两个发色环金属化(C.; N)配体和一个高能辅助配体(L.; X)组成的杂配Ir(III)配合物的合成和表征。在双环金属化的Ir(ppz)2上引入高能辅助配体(例如pmi)不会导致在室温下发射。但是,用咔唑基,二苯基氨基或芴基吡唑基基发色配体代替ppz发色配体会导致在室温下发射。在第三章中,还通过掺入高三重态能量,更易还原的辅助配体合成了可还原的基于flz的Ir(III)配合物。讨论了它们的电化学,光谱和电致发光性质。第四章讨论了三环金属化的Ir(III)苯并喹啉配合物Ir(bzq)3的合成和光物理性质。以mer -Ir(bzq)3作为宽带发射器的白色磷光OLED的最大外部量子效率约为12%。在第5章中,我们利用广泛的温度依赖性寿命研究来估计蓝色和近紫外磷光环金属化Ir(III)配合物的零场分裂(ZSF)和配体场(LF)状态能。这是我们首次确定蓝色环金属化Ir(III)配合物的LF状态。 LF态的热填充极有可能是蓝色环金属化Ir(III)配合物表现出的失活过程之一。从依赖温度的研究中,我们了解到热填充LF态所需的活化能(Ea)和非辐射衰减速率常数(k nr(T))是影响高能磷光环金属化Ir(III)量子效率的重要因素。 )复合体。

著录项

  • 作者

    Sajoto, Tissa.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Chemistry Organic.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号