首页> 外文学位 >Characteristic changes in electrocorticographic power spectra of the human brain.
【24h】

Characteristic changes in electrocorticographic power spectra of the human brain.

机译:人脑的脑电图功率谱的特征变化。

获取原文
获取原文并翻译 | 示例

摘要

We quantified the character and underlying nature of spectral changes in human brain electric potentials, while working with implanted cortical surface arrays in epileptic patients. In our initial motor movement study, we identified a broadband in the power spectrum at 76-100 Hz, which increased in power in a focal brain region during activity, in stark contrast to well known non-focal power decreases in the alpha/beta rhythms at low frequencies 8-32 Hz. We observed that these changes also happened, albeit not as strongly, during movement imagery, but could be dramatically enhanced when we coupled imagery associated spectral changes to cursor-based feedback (a brain computer interface). We hypothesized that this broad band and the alpha/beta rhythms represent different processes: the peaks originate from synchronous processes over large areas of the brain, while the broadband reveals temporally scale-free (asynchronous) changes associated with local neural computation. We were able to map local function in the brain, in real-time, by capturing broadband power changes in the 76-200 Hz "chi-band". After careful hardware characterization, we discovered that the cortical spectrum follows a power law of the form P ∼ f-chi, where chi = 4.0 +/- 0.1 between 80-500 Hz. The exponent shifts to chi L = 2.0 +/- 0.4 over all 10 ≤ f ≤ 500 Hz, after dividing out a Lorentzian crossover function (f 0 = 70 Hz). In cortical areas associated with motor movement, a principal component-type decomposition removed the alpha/beta rhythms, and find that only the amplitude of the power law, not the value of chi L, changes with activity.
机译:我们在癫痫患者中植入皮质表面阵列的同时,对人脑电位频谱变化的特征和潜在本质进行了量化。在我们最初的运动研究中,我们在功率谱中发现了76-100 Hz的宽带,该宽带在运动过程中在大脑局部区域的功率增加,这与众所周知的α/β节律的非焦点功率降低形成鲜明对比。在低频8-32 Hz我们观察到这些变化在运动图像过程中也发生了,尽管没有那么强烈,但是当我们将图像相关的光谱变化与基于光标的反馈(大脑计算机接口)耦合时,这些变化可能会大大增强。我们假设该宽带和α/β节律代表不同的过程:峰源自大脑大面积区域的同步过程,而宽带则揭示了与局部神经计算相关的无时间尺度变化(异步)。通过捕获76-200 Hz“ chi-band”中宽带功率的变化,我们能够实时绘制大脑的局部功能。经过仔细的硬件表征,我们发现皮层光谱遵循P〜f-chi形式的幂律,其中chi = 4.0 +/- 0.1在80-500 Hz之间。在除以洛伦兹分频函数(f 0 = 70 Hz)之后,在所有10≤f≤500 Hz上,指数都移至chi L = 2.0 +/- 0.4。在与运动相关的皮层区域,主成分类型分解消除了α/β节律,发现只有幂律的幅度而不是chi L的值随活动而变化。

著录项

  • 作者

    Miller, Kai Joshua.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Biology Neuroscience.;Biophysics Medical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号