首页> 外文学位 >Volume change and swelling pressure of expansive clay in the crystalline swelling regime.
【24h】

Volume change and swelling pressure of expansive clay in the crystalline swelling regime.

机译:晶体膨胀过程中膨胀土的体积变化和膨胀压力。

获取原文
获取原文并翻译 | 示例

摘要

A significant amount of research has been carried out to characterize expansive clay behavior from either microstructural or macrostructural perspectives; however, there exists a current gap in our knowledge about the basic mechanisms that relate one structural level to another. This research works to fill the gap between our understanding of expansive clay behavior at a microstructural (particle and fabric scale) level with our understanding at the bulk (engineering) scale.;The main objectives of the work are: 1) to qualitatively examine how clay particle fabric, stress paths, water potential, and mineralogy affect the translation of crystalline interlayer swelling to bulk volume change and swelling pressure; 2) to quantify these effects by defining curves describing constitutive surfaces for the behavior of smectite in the crystalline swelling regime under free swell and constant strain (zero volume change) boundary conditions; 3) to interpret the experimental observations in the context of existing conceptual models, including the porosity evolution model (Likos & Lu, 2006) and the Barcelona Basic Model (BBM) (Gens & Alonso, 1992); and (4) to develop and evaluate a new conceptual model for examining microstructural changes in fabric associated with crystalline interlayer swelling.;Three types of clay were selected for testing: Na-smectite, Ca-smectite, and a Ca-exchanged form of the Na-smectite. Results obtained include: SEM imaging of Na and Ca smectite, void ratio as a function of compaction pressure, water vapor sorption isotherms, axial deformation vs. relative humidity (RH) during wetting and drying for free swelling boundary conditions, and swelling pressure vs. RH for constant strain boundary conditions.;Three scale-level porosities were identified; this work focused on the interaction between the interlayer (eIL) and the inter-particle (eIP) void spaces. Sorption isotherms follow a wavy behavior, with the steeper portions of the curve corresponding to the one and two layer hydration states. Bulk volume change and swelling pressure response reflected this behavior, especially for RH corresponding to the 1-to-2 hydration layer transition. Initial density has a significant effect on bulk volume change and swelling pressure for RH equal or greater than that corresponding to the second hydration layer; interlayer swelling for denser specimens is more effectively upscaled to bulk response. During the first layer transition, most of the crystalline swelling was absorbed into the inter-particle void space. Clay mineralogy and exchange cation identity are also important variables. Ca-smectite exhibits larger bulk volume changes and swelling pressures than Na-smectite for tests under the same stress conditions. For the Ca-exchanged smectite, the cation affects sorption response but it does not affect the volume change response. Hysteresis in the volume change response is more evident for denser specimens, and is larger for Na-smectite. Stress history is also an important factor. The ratio of macrostructural strains to microstructural strains (epsilon PVM/epsilonvm) decreases with lower values of maximum past pressure (po) for all suction values during wetting; as suction decreases, the epsilonPVM/epsilon vm ratio is larger in magnitude, and it becomes more sensitive to p o.;With better knowledge of how microstructural swelling translates to macroscopic behavior and what mechanisms and variables are important, the geotechnical engineering community will be more equipped to approach and resolve the several problems involving expansive clays. Likewise, numerous applications in industry can use expansive clays more effectively if quantitative values provide a guideline of what combinations of normal stress, void ratio, and water content of a soil within the crystalline swelling regime have a significant effect in the soil performance.
机译:为了从微观结构或宏观结构的角度描述膨胀粘土的特性,已经进行了大量研究。但是,我们对将一个结构层次与另一个结构层次联系起来的基本机制的知识存在当前的差距。这项研究旨在填补我们对微观结构(颗粒和织物尺度)膨胀粘土行为的理解与我们对整体(工程)尺度的理解之间的差距。这项工作的主要目标是:1)定性地研究如何粘土颗粒织物,应力路径,水势和矿物学影响晶体夹层膨胀到体积变化和膨胀压力的转变; 2)通过定义描述蒙脱石在自由溶胀和恒定应变(零体积变化)边界条件下晶体溶胀行为的本构面的曲线来量化这些影响; 3)在现有概念模型的背景下解释实验观测,包括孔隙度演化模型(Likos和Lu,2006)和巴塞罗那基本模型(BBM)(Gens和Alonso,1992); (4)开发和评估一种新的概念模型,以检查与晶体中间层溶胀有关的织物微结构变化。;选择了三种类型的粘土进行测试:钠蒙脱石,钙蒙脱石和钙交换形式的粘土。钠蒙脱石。获得的结果包括:Na和Ca蒙脱石的SEM成像,作为压实压力的函数的空隙率,水蒸气吸附等温线,在自由溶胀边界条件下润湿和干燥过程中的轴向变形与相对湿度(RH)以及溶胀与压力的关系。在恒定应变边界条件下为相对湿度。这项工作集中在夹层(eIL)和粒子间(eIP)空隙之间的相互作用。吸附等温线呈波浪状,曲线的较陡部分对应于一层和两层的水合状态。体积变化和溶胀压力响应反映了这种行为,特别是对于与1至2水化层过渡相对应的RH。初始密度对等于或大于对应于第二水合层的RH的体积变化和溶胀压力具有显着影响;对于较稠密的标本,夹层膨胀更有效地扩大到了体积响应。在第一层过渡期间,大部分晶体溶胀被吸收到颗粒间空隙空间中。粘土矿物学和交换阳离子身份也是重要的变量。在相同应力条件下进行测试时,钙蒙脱石比钠蒙脱石具有更大的体积变化和溶胀压力。对于钙交换蒙脱石,阳离子影响吸附响应,但不影响体积变化响应。体积变化响应的滞后现象在较密的样品中更为明显,而在钠蒙脱石中则更大。压力史也是一个重要因素。对于润湿过程中所有吸力值而言,随着最大过去压力(po)的值降低,宏观结构应变与微观结构应变的比率(εPVM / epsilonvm)降低;随着吸力的降低,epsilonPVM / epsilon vm比值会变大,并且对p o变得更加敏感。随着对微观结构膨胀如何转化为宏观行为以及重要的机理和变量有更好的了解,岩土工程界将有能力解决和解决涉及膨胀粘土的几个问题。同样,如果定量值提供了在晶体溶胀范围内,法向应力,空隙率和土壤含水量的组合对土壤性能有重要影响的准则,则工业上的许多应用都可以更有效地使用膨胀粘土。

著录项

  • 作者

    Wayllace, Alexandra.;

  • 作者单位

    University of Missouri - Columbia.;

  • 授予单位 University of Missouri - Columbia.;
  • 学科 Engineering Geological.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号