首页> 外文学位 >Low Voltage and Low Power Circuit Techniques for DC-DC Regulators in Battery Powered Mobile Systems.
【24h】

Low Voltage and Low Power Circuit Techniques for DC-DC Regulators in Battery Powered Mobile Systems.

机译:电池供电移动系统中DC-DC稳压器的低压和低功率电路技术。

获取原文
获取原文并翻译 | 示例

摘要

Different types of dc-dc regulators are essential to power up various integrated circuits that give nowadays battery powered mobile systems with diverse functions. As trend of mobile systems is towards smaller size, more functions, and longer battery time, dc-dc regulators with high compactness and power efficiency are most wanted.;In this thesis, different low voltage and low power circuit techniques are proposed to bring those dc-dc regulators commonly used in mobile systems with higher efficiency at a wide range of load condition and also smaller size.;A low-quiescent current, high-slew rate, error amplifier is proposed to bring low-dropout regulators (LDRs) with high light-load efficiency. Transient responses of such LDRs are not degraded as slew-rate of the proposed design is no longer limited by its quiescent current. The proposed design improves light-load stability of LDRs applied to system-on-chips. This design was fabricated in a 0.18mum CMOS process. Measurement result shows that the LDR responds within ∼200ns and is fully recovered within ∼1mus at only 1.2muA quiescent current.;A 0.9V input pulse-width modulator is proposed for a boost converter employed in systems with single-cell Nickel-metal hydride battery. This modulator enables the use of entire battery capacity to prolong battery time. A CMOS-control rectifier (CRR) is proposed to provide adaptive dead-time control, which improves efficiency by eliminating shoot-through current and minimizing both body-diode conduction loss and charge-sharing loss. The CCR enables synchronous boost converter to operate in discontinuous-conduction mode, which enables the use of small off-chip components at sub-MHz switching frequency to minimize switching related losses. This design was fabricated in a 0.35mum CMOS process. Experimental results prove that the converter can be directly powered from 0.9-V input with ∼85% efficiency at 100-mA output.;An auto-selectable-frequency pulse-width modulator is proposed for a buck converter. This modulator improves light-load efficiency by selecting converter switching frequency based on its load current from a set of pre-defined frequencies, which are designed to guarantee that the converter output spectrum is as predictable as the one with pulse-width modulation even the switching frequency is changed with load current. Very small off-chip components can be used by designing the maximum switching frequency in MHz-range. This design was fabricated in a 0.35mum CMOS process and a significant improvement at light-load efficiency is experimentally verified.
机译:不同类型的dc-dc稳压器对于给各种集成电路供电至关重要,这些集成电路为当今的电池供电移动系统提供了多种功能。随着移动系统朝着更小尺寸,更多功能和更长电池使用时间的趋势发展,最需要具有紧凑性和高能效的DC-DC稳压器。本文提出了不同的低电压和低功率电路技术来实现这些目标。通常在移动系统中使用的dc-dc稳压器在较大的负载条件和较小的尺寸下具有更高的效率。提出了一种低静态电流,高斜率的误差放大器,以使低压降稳压器(LDR)具有高轻载效率。这种LDR的瞬态响应不会降低,因为拟议设计的转换速率不再受其静态电流限制。所提出的设计提高了应用于片上系统的LDR的轻载稳定性。该设计采用0.18μmCMOS工艺制造。测量结果表明,LDR在约200ns内响应,并且仅在1.2μA静态电流下即可在约1mus内完全恢复。提出了一种0.9V输入脉冲宽度调制器,用于单电池镍氢金属电池系统中的升压转换器电池。该调制器可以使用整个电池容量来延长电池时间。提出了一种CMOS控制整流器(CRR),以提供自适应空载时间控制,从而通过消除直通电流并最小化体二极管传导损耗和电荷共享损耗来提高效率。 CCR使同步升压转换器能够以不连续导通模式工作,这使得能够在亚MHz开关频率下使用小型片外组件,以将与开关相关的损耗降至最低。该设计采用0.35μmCMOS工艺制造。实验结果证明,该转换器可以在0.9V输入下直接供电,在100mA输出时的效率约为85%。;提出了一种用于buck转换器的自动选择频率脉宽调制器。该调制器通过从一组预定频率中基于其负载电流选择转换器开关频率来提高轻载效率,该频率旨在确保转换器输出频谱与采用脉宽调制的转换器一样可预测,即使是开关频率随负载电流变化。通过设计MHz范围内的最大开关频率,可以使用非常小的片外组件。该设计采用0.35μmCMOS工艺制造,并通过实验验证了轻载效率的显着提高。

著录项

  • 作者

    Man, Tsz Yin.;

  • 作者单位

    Hong Kong University of Science and Technology (Hong Kong).;

  • 授予单位 Hong Kong University of Science and Technology (Hong Kong).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号