首页> 外文学位 >Analysis of a full-scale high-rate activated sludge system and second stage nitrifying biological aerated filter using modeling methods and fluorescent in-situ hybridization.
【24h】

Analysis of a full-scale high-rate activated sludge system and second stage nitrifying biological aerated filter using modeling methods and fluorescent in-situ hybridization.

机译:使用建模方法和荧光原位杂交技术分析大规模的高速率活性污泥系统和第二阶段硝化生物曝气滤池。

获取原文
获取原文并翻译 | 示例

摘要

A current challenge to the civil/environmental engineering field is to assist full-scale wastewater treatment facilities through wider use of advances in modeling methods and analytical techniques. To address this challenge I applied modeling tools and, with assistance, the molecular biology analytical method of Fluorescent In-Situ Hybridization (FISH) to the high rate activated sludge process and the second stage nitrifying biological aerated filter at the full-scale Freeport Illinois Wastewater Treatment Plant.; I compared three approaches to modeling of biological activity: the endogenous respiration approach, the death:regeneration approach, and an approach that includes the production of soluble microbial products. I generated a dynamic model of the nitrifying biological aerated system that was based on observation of concentration profiles within the bed and that addressed major phenomena within the system. Co-workers and I used FISH to identify betaproteobacterial ammonia oxidizing bacteria and nitrite oxidizing bacteria in major process streams of the plant on three occasions and attempted to use the information to quantify the biomass composition of these streams. I compared the composition analytical results to model predictions and to general knowledge of the systems to determine the success of quantification.; I found that the three approaches to modeling biological activity differed little in the prediction of ammonium conversion and biomass composition. A key difference was the soluble microbial products approach's ability to predict soluble organic compound concentration. My dynamic model of the nitrifying biological aerated filter process provided reasonably accurate predictions of the effluent ammonia concentration for both routine operation and a system performance test. The model provided insight into the condition limiting process performance and suggests that oxygen availability within the biofilm is the key constraint on performance. The biomass composition quantification accomplished using FISH methods matched anticipated results for the activated sludge system but did not match expectations for the nitrifying biological aerated filter. Small sample size and number probably played a major role in this finding. Additional laboratory work is required to determine the relationships between that which is observed with FISH, actual micro organism mass, and biomass activity quantification used within models of biological treatment systems.
机译:当前对土木/环境工程领域的挑战是通过广泛使用建模方法和分析技术的进步来协助大型废水处理设施。为了应对这一挑战,我应用了建模工具,并借助荧光原位杂交(FISH)的分子生物学分析方法对高速活性污泥工艺和第二阶段硝化生物曝气生物滤池进行了全面处理。处理厂。我比较了三种模拟生物活性的方法:内源性呼吸方法,死亡:再生方法以及包括可溶性微生物产品生产的方法。我基于观察床内浓度分布并解决了系统内的主要现象,生成了硝化生物曝气系统的动态模型。我和同事使用FISH在三种情况下鉴定了工厂主要工艺流中的β变形细菌氨氧化细菌和亚硝酸盐氧化细菌,并试图利用这些信息来量化这些流的生物量组成。我将成分分析结果与模型预测和系统的一般知识进行了比较,以确定定量的成功。我发现,对生物活性进行建模的三种方法在预测铵转化和生物量组成方面几乎没有什么不同。一个关键的区别是可溶性微生物产品方法预测可溶性有机化合物浓度的能力。我的硝化生物曝气滤池过程动力学模型为常规操作和系统性能测试提供了废水氨浓度的合理准确的预测。该模型提供了对限制工艺性能的条件的洞察力,并表明生物膜内的氧气利用率是性能的关键约束。使用FISH方法完成的生物量组成定量与活性污泥系统的预期结果相符,但与硝化生物曝气滤池的期望值不符。小样本量和少量样本可能是这一发现的主要因素。需要额外的实验室工作来确定在FISH观察到的结果,实际微生物质量和生物处理系统模型中使用的生物量活性定量之间的关系。

著录项

  • 作者

    Sprouse, George Brian.;

  • 作者单位

    Northwestern University.$bCivil and Environmental Engineering.;

  • 授予单位 Northwestern University.$bCivil and Environmental Engineering.;
  • 学科 Engineering Civil.; Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 267 p.
  • 总页数 267
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号