首页> 外文学位 >Imaging by wave-equation inversion.
【24h】

Imaging by wave-equation inversion.

机译:通过波方程反演成像。

获取原文
获取原文并翻译 | 示例

摘要

Wave-equation inversion is a powerful technique able to build clean images with balanced amplitudes in complex subsurface areas relative to migration alone. The main contribution of this thesis is perform wave-equation inversion in image space without making any velocity model or acquisition geometry approximations. The method explicitly computes the least-squares Hessian matrix, defined from the modeling/migration operators, and uses an iterative solver to find the solution of the resulting system of equations. This technique is also 3-D, as it can handle 3-D data in a target-oriented fashion. This allows the method to improve the image where it is more important: in the neighborhood of the reservoir.; The Hessian matrix contains more information than just the amplitude of the diagonal elements; its rows are the point spread functions (PSFs) of the imaging system. In seismic imaging, the PSFs are non-stationary, due to the velocity model complexity, and the limited acquisition geometry. To make wave-equation inversion practical, I optimized the computation of the Hessian by taking advantage of the sparsity and structure of the matrix, the acquisition geometry, and the necessary frequency sampling. As a result, the computational savings can be of five orders of magnitude or grater compared to a direct implementation.; Wave-equation inversion in the presence of a complex overburden leads to an ill-conditioned system of equations that needs to be regularized to obtain a stable numerical solution. Regularization can be implemented in the poststack image-domain (zero subsurface offset), where the options for a regularization operator are limited to a customary damping, or in the prestack image-domain (subsurface offset), where a physically-inspired regularization operator (differential semblance) can be applied. Though the prestack image-domain inversion is more expensive than the poststack image-domain inversion, it can improve the reflectors continuity into the shadow zones with an enhanced signal-to-noise ratio. I demonstrate the utility of both these methods by improving the subsalt-sediment images of the Sigsbee2B synthetic and a 3-D Gulf of Mexico field data set.
机译:波动方程反演是一项强大的技术,能够在复杂的地下区域(相对于单独的偏移)构建振幅平衡的清晰图像。本文的主要贡献是在图像空间中进行波方程反演,而无需进行任何速度模型或采集几何近似。该方法显式地计算从建模/迁移运算符定义的最小二乘Hessian矩阵,并使用迭代求解器来找到所得方程组的解。该技术也是3-D,因为它可以以面向目标的方式处理3-D数据。这使得方法可以在更重要的地方改善图像:在储层附近。黑森矩阵不仅包含对角元素的幅度,还包含更多信息。它的行是成像系统的点扩散函数(PSF)。在地震成像中,由于速度模型的复杂性和有限的采集几何形状,PSF是非平稳的。为了使波方程反演变得切实可行,我利用矩阵的稀疏性和结构,采集几何以及必要的频率采样来优化了Hessian的计算。结果,与直接实现相比,计算节省可以达到五个数量级或更大。在存在复杂覆盖层的情况下,波方程反演会导致方程组病态,需要对其进行正则化才能获得稳定的数值解。可以在叠后图像域(零表面下偏移)中实现正则化,在此情况下,正则化运算符的选项仅限于常规阻尼;而在叠前图像域(地下偏移)中,则采用物理启发的正则化运算符(可以应用)。尽管叠前图像域反转比叠后图像域反转更昂贵,但它可以通过增强的信噪比来改善反射器进入阴影区域的连续性。我通过改进Sigsbee2B人工合成的盐下沉积图像和3D墨西哥湾现场数据集来演示这两种方法的实用性。

著录项

  • 作者

    Valenciano, Alejandro A.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Geophysics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号