首页> 外文学位 >Development of collagen-hydroxyapatite nanostructured composites via a calcium phosphate precursor mechanism.
【24h】

Development of collagen-hydroxyapatite nanostructured composites via a calcium phosphate precursor mechanism.

机译:通过磷酸钙前体机理开发胶原-羟基磷灰石纳米结构复合材料。

获取原文
获取原文并翻译 | 示例

摘要

Bone is an interpenetrating inorganic/organic composite that consists of mineralized collagen fibrils, which is hierarchically organized into various structures. The structure of mineralized collagen fibril, in which nano-crystals of hydroxyapatite are embedded within the collagen fibrils, provides remarkable mechanical and bio-resorptive properties. Therefore, there have been many attempts to produce collagen-hydroxyapatite composites having a bone-like structure. However, duplication of even the most fundamental level of bone structure has not been easily achieved by conventional nucleation and growth techniques, which are based on the most widely accepted hypothesis of bone mineralization.;In nature, the collagen fibril is mineralized via intrafibrillar mineralization, which produces preferentially oriented hydroxyapatite nano-crystals occupying the interstices in collagen fibrils. Our group has demonstrated that intrafibrillar mineralization can be achieved by using a new method based on the Polymer-Induced Liquid-Precursor (PILP) mineralization process. In the PILP process, a poly-anionic additive can produce an amorphous calcium phosphate precursor which enables us to achieve intrafibrillar mineralization of collagen. It is thought that the precursor is pulled into the interstices of the collagen fibrils via capillary forces, and upon solidification and crystallization of the precursor produces an interpenetrating composite with the nanostructured architecture of bone.;In this dissertation, to demonstrate the effectiveness of the PILP process on the intrafibrillar mineralization of collagen fibril, various collagen scaffolds, such as turkey tendon, bovine tendon and synthetic collagen sponge, were mineralized by the PILP process. Various poly-aspartates with different molecular weight were also used for the optimization of the PILP process for the mineralization of the collagen scaffolds. With the systematic researches, we discovered that the molecular weight of poly-aspartic acid affects the degree of intrafibrillar mineralization of collagen scaffolds. High molecular weight poly-aspartic acid could produce a stable and dispersed amorphous precursor, leading to a high degree of intrafibrillar mineralization. The mineral content of the collagen sponge mineralized using high molecular weight poly-aspartic acid was equivalent to the mineral content of bone. According to X-ray diffraction analysis of the mineralized collagen, the size and composition of the intrafibrillar hydroxyapatite produced by the PILP process were almost identical to carbonated hydroxyapatite in bone. The selective area electron diffraction patterns indicated that the [001] direction of hydroxyapatite is roughly aligned along the c-axis of collagen fibril, leading to the formation 002 arcs. Using dark field imaging, it was possible to visualize the preferentially oriented hydroxyapatite in TEM. Thermal analysis of mineralized collagen also showed a reduction in the thermal stability of collagen, which is similar to that observed in the collagen in bone, due to the presence of intrafibrillar hydroxyapatite.;Now, we confidently suggest that the PILP process can provide a new way to develop synthetic bone-like composites whose nano-structure is very close to the nano-structure of natural bone. Moreover, we hope that our successful intrafibrillar mineralization of collagen via the precursor mechanism revives discussion of hypothesis of bone mineralization via the amorphous calcium phosphate phase.
机译:骨是一种互穿的无机/有机复合物,由矿化的胶原原纤维组成,该胶原原纤维分层组织成各种结构。矿化的胶原原纤维的结构(其中羟基磷灰石的纳米晶体嵌入胶原原纤维内)提供了显着的机械和生物吸收特性。因此,已经进行了许多尝试来生产具有骨状结构的胶原-羟基磷灰石复合材料。然而,基于最广泛接受的骨矿化假设的常规成核和生长技术,即使是最基本的骨骼结构复制也难以实现。自然,胶原纤维是通过原纤维内矿化来矿化的,产生优先取向的羟基磷灰石纳米晶体,占据胶原原纤维的间隙。我们的小组证明,通过使用基于聚合物诱导的液体前体(PILP)矿化过程的新方法可以实现原纤维内矿化。在PILP工艺中,聚阴离子添加剂可产生无定形的磷酸钙前体,从而使我们能够实现胶原纤维内矿化。认为前体通过毛细作用力被拉入胶原原纤维的空隙中,并且在前体固化和结晶后产生具有骨纳米结构的互穿复合材料。在胶原纤维的原纤维内矿化过程中,通过PILP工艺使各种胶原蛋白支架如火鸡腱,牛腱和合成胶原海绵矿化。各种分子量不同的聚天冬氨酸也被用于优化PILP工艺以使胶原蛋白支架矿化。通过系统的研究,我们发现聚天冬氨酸的分子量影响胶原蛋白支架的纤维内矿化程度。高分子量聚天冬氨酸可产生稳定且分散的无定形前体,从而导致高度的原纤维内矿化。用高分子量聚天冬氨酸矿化的胶原蛋白海绵的矿物质含量等于骨骼的矿物质含量。根据矿化胶原蛋白的X射线衍射分析,PILP工艺产生的原纤维内羟基磷灰石的大小和组成与骨骼中的碳酸羟基磷灰石几乎相同。选择性区域电子衍射图表明,羟磷灰石的[001]方向沿胶原原纤维的c轴大致对齐,从而形成002弧。使用暗场成像,可以在TEM中可视化优先取向的羟基磷灰石。矿化胶原蛋白的热分析还显示,由于存在原纤维内羟基磷灰石,胶原蛋白的热稳定性有所降低,这与骨骼中的胶原蛋白相似。现在,我们有信心地认为PILP工艺可以提供一种新的方式开发合成的类骨复合材料,其纳米结构与天然骨的纳米结构非常接近。此外,我们希望通过前体机制成功完成胶原蛋白的原纤维内矿化能够恢复关于通过无定形磷酸钙相进行骨矿化的假设的讨论。

著录项

  • 作者

    Jee, Sang Soo.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号