首页> 外文学位 >Adaptive radial basis function methods for the numerical solution of partial differential equations, with application to the simulation of the human tear film.
【24h】

Adaptive radial basis function methods for the numerical solution of partial differential equations, with application to the simulation of the human tear film.

机译:偏心方程数值解的自适应径向基函数方法及其在人泪膜仿真中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This thesis deals with meshless adaptive numerical methods for solving partial differential equations. Specifically, the type of meshless method used is the radial basis function (RBF) method. We did numerous numerical experiments, built the algorithm from scratch, analyzed it, and tested it on some common test problems. The emphasis of this thesis is on computations and not on proofs.;During our journey, we found many interesting results and ideas. Our goal in developing the adaptive RBF based method is to use it in the future as a method for solving two dimensional tear film equations in a blink cycle. The problem is challenging involving complex moving geometries, fourth-order nonlinear PDEs, and nontrivial boundary conditions. To get some insight, we begin with the one dimensional versions and solve them with spectral collocation methods. In the one dimensional case, we are able to compare them with data from in vivo observations.;Our first experiment regarding the adaptive RBF method started with one dimensional adaptive interpolation problem. We found out that the use of variable RBF shape parameters is substantial. Extending the method to handle more general problems including time-independent and time-dependent problems in one and two dimensions is straightforward. The method can be extended even more to the generalized adaptive finite difference method with no need of special stencils. This can overcome the ill-conditioning issue that is found in the adaptive global RBF methods when applied to problems that exhibit very steep slopes.
机译:本文讨论了求解偏微分方程的无网格自适应数值方法。具体地,所使用的无网格方法的类型是径向基函数(RBF)方法。我们进行了许多数值实验,从头开始构建算法,进行了分析,并针对一些常见的测试问题进行了测试。本文的重点是计算,而不是证明。在我们的旅途中,我们发现了许多有趣的结果和想法。我们开发基于RBF的自适应方法的目标是将来将其用作在眨眼循环中求解二维泪膜方程的方法。这个问题具有挑战性,涉及复杂的移动几何形状,四阶非线性PDE和非平凡的边界条件。为了获得一些见识,我们从一维版本开始,然后使用频谱搭配方法解决它们。在一维情况下,我们能够将它们与体内观察的数据进行比较。我们关于自适应RBF方法的第一个实验始于一维自适应插值问题。我们发现,使用可变的RBF形状参数非常重要。将方法扩展为处理更一般的问题,包括在一维和二维中与时间无关和与时间有关的问题,这很简单。该方法甚至可以扩展到广义自适应有限差分方法,而无需特殊的模板。当应用于具有非常陡峭斜率的问题时,这可以克服在自适应全局RBF方法中发现的不良条件问题。

著录项

  • 作者

    Heryudono, Alfa R. H.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号