首页> 外文学位 >An integrated KD-Tree cutter size determination method for 3-axis finish machining of sculptured surface parts.
【24h】

An integrated KD-Tree cutter size determination method for 3-axis finish machining of sculptured surface parts.

机译:一种集成的KD-Tree刀具尺寸确定方法,用于雕刻表面零件的3轴精加工。

获取原文
获取原文并翻译 | 示例

摘要

In this research, an integrated KD-Tree cutter size search model is proposed to quickly determine the largest cutters and their accessible surface regions for 3-axis finish machining, without gouging and interference. By using these cutters, the highest material removal rate can be achieved, while maintaining the quality of the machined part. To overcome the problems of existing methods, such as long computational time and low accuracy, this model integrates the vertex KD-tree method with local gouging detection method. In this work, an imaginary cutter model is used to define a cutter, given a cutter contact point (CC point) and a testing point. All the testing points needed are derived from the part STL model. A simple and efficient algorithm is suggested to get rid of the redundant vertices in the STL file of the part. The local gouging detection method identifies the maximum local gouging-free cutter for a CC point as the initial cutter, and this cutter is used to determine the area of the cutter shadow. The cutter shadow is used to define a search range of the testing points to avoid any unnecessary search. Then the vertices covered by the shadow are quickly located by the KD-Tree algorithm from all the vertices, and used as test points to determine the final gouging and interference-free cutter size. The proposed model is tested with a hairdryer mould example. The results show that the model is not only computationally efficient, but also highly accurate. In addition, the model is suitable for any types of milling cutters, and ready to implement in the CAD/CAM software.;Keywords: STL File, CATIA, Cutter Size Selection, KD-Tree search, Boundary, Gouging, Interference, Accuracy, and Computational Time. iv
机译:在这项研究中,提出了一种集成的KD-Tree刀具尺寸搜索模型,可以快速确定最大的刀具及其可触及的3轴精加工表面区域,而不会产生气刨和干涉。通过使用这些刀具,可以在保持加工零件质量的同时实现最高的材料去除率。为了克服现有方法存在的计算时间长,精度低等问题,该模型将顶点KD树方法与局部气刨检测方法相结合。在这项工作中,假想的刀具模型用于定义刀具,并给出刀具接触点(CC点)和测试点。所有需要的测试点均来自零件STL模型。提出了一种简单有效的算法来消除零件的STL文件中的多余顶点。局部气刨检测方法将CC点的最大局部无气刨刀具识别为初始刀具,并使用该刀具确定刀具阴影的面积。刀具阴影用于定义测试点的搜索范围,以避免任何不必要的搜索。然后,通过KD-Tree算法从所有顶点快速定位阴影所覆盖的顶点,并将其用作测试点以确定最终的气刨和无干扰刀具尺寸。建议的模型已通过吹风机模具示例进行了测试。结果表明,该模型不仅计算效率高,而且准确性高。此外,该模型适用于任何类型的铣刀,并可以在CAD / CAM软件中实现。关键字:STL文件,CATIA,刀具尺寸选择,KD树搜索,边界,刨削,干涉,精度,和计算时间。 iv

著录项

  • 作者

    Liang, Hai Qing.;

  • 作者单位

    Concordia University (Canada).;

  • 授予单位 Concordia University (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 M.A.Sc.
  • 年度 2008
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号