首页> 外文学位 >Critical flaw size in silicon nitride ball bearings.
【24h】

Critical flaw size in silicon nitride ball bearings.

机译:氮化硅球轴承的关键缺陷尺寸。

获取原文
获取原文并翻译 | 示例

摘要

Aircraft engine and bearing manufacturers have been aggressively pursuing advanced materials technology systems solutions to meet main shaft-bearing needs of advanced military aircraft engines. Ceramic silicon nitride hybrid bearings are being developed for such high performance applications. Though silicon nitride exhibits many favorable properties such as high compressive strength, high hardness, a third of the density of steel, low coefficient of thermal expansion, and high corrosion and temperature resistance, they also have low fracture toughness and are susceptible to failure from fatigue spalls emanating from pre-existing surface flaws that can grow under rolling contact fatigue (RCF). Rolling elements and raceways are among the most demanding components in aircraft engines due to a combination of high cyclic contact stresses, long expected component lifetimes, corrosive environment, and the high consequence of fatigue failure. The cost of these rolling elements increases exponentially with the decrease in allowable flaw size for service applications. Hence the range of 3D non-planar surface flaw geometries subject to RCF is simulated to determine the critical flaw size (CFS) or the largest allowable flaw that does not grow under service conditions.;This dissertation is a numerical and experimental investigation of surface flaws in ceramic balls subjected to RCF and has resulted in the following analyses:;Crack Shape Determination: the nucleation of surface flaws from ball impact that occurs during the manufacturing process is simulated. By examining the subsurface Hertzian stresses between contacting spheres, their applicability to predicting and characterizing crack size and shape is established. It is demonstrated that a wide range of cone and partial cone cracks, observed in practice, can be generated using the proposed approaches.;RCF Simulation: the procedure and concerns in modeling nonplanar 3D cracks subject to RCF using FEA for stress intensity factor (SIF) trends observed from parametrically varying different physical effects are plotted and discussed. Included are developments in contact algorithms for 3D nonplanar cracks, meshing of nonplanar cracks for SIFs, parametric studies via MATLAB and other subroutines in python and FORTRAN.;Establishing Fracture Parameters: the fracture toughness, K c, is determined by using numerical techniques on experimental tests namely the Brazilian disc test and a novel compression test on an indented ball. The fatigue threshold for mixed-mode loading, Keff, is determined by using a combination of numerical modeling and results from the V-ring single ball RCF test.;CFS Determination: the range of 3D non-planar surface flaw geometries subject to RCF are simulated to calculate mixed mode SIFs to determine the critical flaw size, or the largest allowable flaw that does not grow under service conditions. The CFS results are presented as a function of Hertzian contact stress, traction magnitude, and crack size.;Empirical Equations: accurate empirical equations (response functions) for the KI, KII, and K III SIFs for semi-elliptical surface cracks subjected to RCF as a function of the contact patch diameter, angle of crack to the surface, max pressure, position along the crack front, and aspect ratio of the crack are developed via parametric 3D FEA.;Statistical Probability of Failure: since the variability in mechanical properties for brittle materials is high a probabilistic investigation of variations in flaw size, flaw orientation, fracture toughness, and Hertzian load on failure probability is conducted to statistically determine the probability of ball failure for an existing flaw subjected to the service conditions. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
机译:飞机发动机和轴承制造商一直在积极寻求先进的材料技术系统解决方案,以满足高级军用飞机发动机主轴轴承的需求。正在为此类高性能应用开发陶瓷氮化硅混合轴承。尽管氮化硅具有许多良好的性能,例如高抗压强度,高硬度,钢密度的三分之一,低热膨胀系数以及高耐腐蚀性和耐高温性,但它们的断裂韧性也很低,并且容易因疲劳而失效。由先前存在的表面缺陷引起的剥落,这些表面缺陷会在滚动接触疲劳(RCF)下增长。滚动元件和滚道是飞机发动机中最苛刻的组件,这是由于高循环接触应力,预期组件寿命长,腐蚀性环境以及疲劳破坏的严重后果共同导致的。这些滚动元件的成本随着服务应用中允许的缺陷尺寸的减小而呈指数增长。因此,模拟了受RCF约束的3D非平面表面缺陷几何形状的范围,以确定临界缺陷尺寸(CFS)或在使用条件下不会增长的最大允许缺陷。;本论文是对表面缺陷的数值和实验研究经受RCF的陶瓷球中的碳纳米管,并进行了以下分析:裂纹形状的确定:模拟了在制造过程中由于球撞击而产生的表面缺陷的形核。通过检查接触球之间的地下赫兹应力,确定了它们在预测和表征裂纹尺寸和形状方面的适用性。事实证明,使用所提出的方法可以在实践中观察到大范围的圆锥形和部分圆锥形裂纹。; RCF仿真:使用有限元分析作为应力强度因子(SIF)对受RCF约束的非平面3D裂纹进行建模的过程和关注点)绘制并讨论了从参数变化的不同物理效果观察到的趋势。包括用于3D非平面裂纹的接触算法,用于SIF的非平面裂纹的网格划分,通过MATLAB和python和FORTRAN中的其他子例程进行参数研究的发展;建立断裂参数:断裂韧性K c通过在实验中使用数值技术来确定测试包括巴西圆盘测试和对锯齿球的新型压缩测试。通过组合数值模型和V型圈单球RCF测试结果确定混合模式载荷的疲劳阈值Keff。CFS确定:受RCF约束的3D非平面表面缺陷几何范围为模拟以计算混合模式SIF,以确定临界缺陷尺寸或在使用条件下不会增长的最大允许缺陷。 CFS结果是赫兹接触应力,牵引力大小和裂纹尺寸的函数;经验方程式:经受RCF的半椭圆形表面裂纹的KI,KII和K III SIF的精确经验方程式(响应函数)通过参数3D FEA可以得出接触补丁直径,裂纹与表面的角度,最大压力,沿裂纹前沿的位置以及裂纹的长宽比的函数关系;失效统计概率:由于机械性能的可变性对于脆性材料,对缺陷尺寸,缺陷取向,断裂韧性和赫兹载荷对失效概率的变化进行概率研究是为了统计确定服役条件下现有缺陷的球形失效概率。 (可通过佛罗里达大学图书馆网站获得本文的全文。请检查http://www.uflib.ufl.edu/etd.html)

著录项

  • 作者

    Levesque, George Arthur.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Aerospace.;Engineering Electronics and Electrical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号