首页> 外文学位 >A wing design methodology for low-boom low-drag supersonic business jet.
【24h】

A wing design methodology for low-boom low-drag supersonic business jet.

机译:用于低动量低阻力超音速公务机的机翼设计方法。

获取原文
获取原文并翻译 | 示例

摘要

The arguably most critical hindrance to the successful development of a commercial supersonic aircraft is the impact of the sonic boom signature. The sonic boom signature of a supersonic aircraft is predicted using sonic boom theory, which formulates a relationship between the complex three-dimensional geometry of the aircraft to the pressure distribution and decomposes the geometry in terms of simple geometrical components. The supersonic aircraft design process is typically based on boom minimization theory. This theory provides a theoretical equivalent area distribution which should be matched by the conceptual design in order to achieve the pre-determined sonic boom signature. The difference between the target equivalent area distribution and the actual equivalent area distribution is referred to here as the gap distribution.;The primary intent of this dissertation is to provide the designer with a systematic and structured approach to designing the aircraft wings with limited changes to the baseline concept while achieving critical design goals. The design process can be easily overwhelmed and may be difficult to evaluate their effectiveness. The wing design is decoupled into two separate processes, one focused on the planform design and the other on the camber design. Moreover, this design methodology supplements the designer by allowing trade studies to be conducted between important design parameters and objectives.;The wing planform design methodology incorporates a continuous gradient-based optimization scheme to supplement the design process. This is not meant to substitute the vast amount of knowledge and design decisions that are needed for a successful design. Instead, the numerical optimization helps the designer to refine creative concepts.;Last, this dissertation integrates a risk mitigation scheme throughout the wing design process. The design methodology implements minimal design changes to the wing geometry white achieving the target design goal. Undesired modifications which negate other design considerations such as wing flap design, fuel volume, etc. may occur. Instead, by minimizing the amount design modifications, the wing design retains its baseline design performance.
机译:可以说,对商业超音速飞机的成功开发而言,最关键的障碍是音爆信号的影响。超音速飞机的音爆特征是使用音爆理论预测的,该理论阐明了飞机复杂的三维几何形状与压力分布之间的关系,并根据简单的几何成分分解了几何形状。超音速飞机的设计过程通常基于动臂最小化理论。该理论提供了理论上等效的面积分布,该概念上的等效面积分布应与概念设计相匹配,以实现预定的音爆特征。目标等效面积分布与实际等效面积分布之间的差异在此称为间隙分布。本论文的主要目的是为设计人员提供一种系统化和结构化的方法,以对飞机机翼进行有限的更改。基线概念,同时实现关键的设计目标。设计过程很容易被淹没,并且可能难以评估其有效性。机翼设计被分解为两个独立的过程,一个集中在平面设计上,另一个集中在外倾设计上。此外,这种设计方法通过允许在重要的设计参数和目标之间进行贸易研究来补充设计者。机翼平面设计方法结合了基于连续梯度的优化方案以补充设计过程。这并不是要替代成功设计所需的大量知识和设计决策。取而代之的是,数值优化可以帮助设计人员完善创意概念。最后,本文在机翼设计过程中集成了风险缓解方案。该设计方法对机翼几何白色进行了最小的设计更改,从而达到了目标设计目标。可能会发生不需要的修改,这些修改会否定其他设计注意事项,例如机翼襟翼设计,燃油量等。相反,通过最大程度地减少设计修改量,机翼设计保留了其基线设计性能。

著录项

  • 作者

    Le, Daniel B.;

  • 作者单位

    University of Virginia.;

  • 授予单位 University of Virginia.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号