首页> 外文学位 >Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design.
【24h】

Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design.

机译:飞机概念设计的多学科设计和优化(MDO)方法。

获取原文
获取原文并翻译 | 示例

摘要

An integrated design and optimization methodology has been developed for the conceptual design of an aircraft. The methodology brings higher fidelity Computer Aided Design, Engineering and Manufacturing (CAD, CAE and CAM) Tools such as CATIA, FLUENT, ANSYS and SURFCAM into the conceptual design by utilizing Excel as the integrator and controller. The approach is demonstrated to integrate with many of the existing low to medium fidelity codes such as the aerodynamic panel code called CMARC and sizing and constraint analysis codes, thus providing the multi-fidelity capabilities to the aircraft designer. The higher fidelity design information from the CAD and CAE tools for the geometry, aerodynamics, structural and environmental performance is provided for the application of the structured design methods such as the Quality Function Deployment (QFD) and the Pugh's Method. The higher fidelity tools bring the quantitative aspects of a design such as precise measurements of weight, volume, surface areas, center of gravity (CG) location, lift over drag ratio, and structural weight, as well as the qualitative aspects such as external geometry definition, internal layout, and coloring scheme early in the design process. The performance and safety risks involved with the new technologies can be reduced by modeling and assessing their impact more accurately on the performance of the aircraft. The methodology also enables the design and evaluation of the novel concepts such as the blended (BWB) and the hybrid wing body (HWB) concepts. Higher fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) allow verification of the claims for the performance gains in aerodynamics and ascertain risks of structural failure due to different pressure distribution in the fuselage as compared with the tube and wing design. The higher fidelity aerodynamics and structural models can lead to better cost estimates that help reduce the financial risks as well. This helps in achieving better designs with reduced risk in lesser time and cost. The approach is shown to eliminate the traditional boundary between the conceptual and the preliminary design stages, combining the two into one consolidated preliminary design phase. Several examples for the validation and utilization of the Multidisciplinary Design and Optimization (MDO) Tool are presented using missions for the Medium and High Altitude Long Range/Endurance Unmanned Aerial Vehicles (UAVs).
机译:已经开发出用于飞机概念设计的集成设计和优化方法。该方法通过利用Excel作为集成器和控制器,将诸如CATIA,FLUENT,ANSYS和SURFCAM之类的更高保真度的计算机辅助设计,工程和制造(CAD,CAE和CAM)工具引入了概念设计。事实证明,该方法可与许多现有的中低保真度代码(例如称为CMARC的空气动力学面板代码)以及尺寸和约束分析代码集成在一起,从而为飞机设计人员提供了多保真度功能。提供了来自CAD和CAE工具的有关几何,空气动力学,结构和环境性能的更高保真度设计信息,以供结构化设计方法(例如质量功能展开(QFD)和Pugh方法)应用。更高保真度的工具带来了设计的定量方面,例如精确测量重量,体积,表面积,重心(CG)位置,举升阻力比和结构重量,以及定性方面,例如外部几何形状在设计过程的早期定义,内部布局和着色方案。新技术涉及的性能和安全风险可以通过更准确地建模和评估其对飞机性能的影响来降低。该方法还可以设计和评估新概念,例如混合(BWB)和混合翼体(HWB)概念。与管子和机翼设计相比,更高的保真度计算流体力学(CFD)和有限元分析(FEA)可以验证空气动力学性能方面的要求,并确定由于机身中压力分布不同而导致的结构失效风险。更高保真度的空气动力学和结构模型可以导致更好的成本估算,从而也有助于降低财务风险。这有助于以更少的时间和成本实现更好的设计,同时降低风险。结果表明,该方法消除了概念设计和初步设计阶段之间的传统界限,将两者合并为一个合并的初步设计阶段。提出了使用中高空远程/续航无人飞行器(UAV)的任务来验证和利用多学科设计与优化(MDO)工具的几个示例。

著录项

  • 作者

    Iqbal, Liaquat Ullah.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号