首页> 外文学位 >Biocatalysis for oxidation of naphthalene to 1-naphthol: Liquid-liquid biphasic systems and solvent tolerant strains.
【24h】

Biocatalysis for oxidation of naphthalene to 1-naphthol: Liquid-liquid biphasic systems and solvent tolerant strains.

机译:萘氧化为1-萘酚的生物催化:液-液两相系统和耐溶剂菌株。

获取原文
获取原文并翻译 | 示例

摘要

Biocatalysis involves the use of enzymes to perform stereo- and enantio-specific reactions. One of the reactions where biocatalysis is a valuable technology is oxidation of naphthalene to 1-naphthol using Toluene ortho-Monooxygenase (TOM) variant TmoA3 V106A, also known as TOM-Green. Whole-cell biocatalysis in a water-organic solvent biphasic system was used to minimize naphthalene and 1-naphthol toxicity, and to increase substrate loading. Recombinant Escherichia coli TG1 cells expressing TOM-Green were used for biphasic biocatalysis and lauryl acetate gave best results among the solvents tested. On a constant volume basis, 8-fold improvement in 1-naphthol production was achieved using biphasic systems compared to biotransformation in aqueous medium. The organic phase was optimized by studying the effects of organic phase ratio and naphthalene concentration in the organic phase. The efficiency of biocatalysis was further improved by application of a solvent tolerant strain Pseudomonas putida S12. P. putida S12 is solvent tolerant owing to its two adaptive mechanisms: outer membrane modification and solvent extrusion using solvent resistant pump srpABC. P. putida S12, in addition to its tolerance to various organic solvents, showed better tolerance to naphthalene compared to E. coli TG1 strain expressing TOM-Green. Application of solvent tolerant P. putida S12 further improved 1-naphthol productivity by approximately 42%. Solvent tolerance of P. putida S12 was further analyzed by transferring its tolerance to a solvent sensitive E. coli strain by transfer of solvent resistant pump srpABC genes. Engineered E. coli strain bearing srpABC genes either in low-copy number plasmid or high-copy number plasmid grew in the presence of a saturated toluene concentration. Engineered E. coli strains were also more tolerant to toxic solvents, e. g., decanol and hexane, compared to the control E. coli strain without srpABC genes. The expression of solvent resistant pump genes was confirmed by Reverse Transcriptase PCR analysis. The main drawbacks of biocatalysis for production of chemicals were addressed and approaches to minimize the drawbacks have been presented. The production of 1-naphthol was significantly improved using biocatalysis in liquid-liquid biphasic systems.
机译:生物催化涉及使用酶来进行立体和对映体特异性反应。生物催化是一种有价值的技术,其中的一种反应是使用甲苯原-单加氧酶(TOM)变体TmoA3 V106A(也称为TOM-Green)将萘氧化为1-萘酚。在水-有机溶剂双相系统中进行全细胞生物催化可最大程度地减少萘和1-萘酚的毒性,并增加底物负载。表达TOM-Green的重组大肠杆菌TG1细胞用于双相生物催化,乙酸月桂酯在测试的溶剂中提供了最佳结果。在恒定的体积基础上,与在水性介质中进行生物转化相比,使用双相系统可将1-萘酚的产量提高8倍。通过研究有机相的比例和萘在有机相中的浓度来优化有机相。通过应用耐溶剂菌株恶臭假单胞菌S12进一步提高了生物催化的效率。恶臭假单胞菌S12由于其两种适应性机制而具有耐溶剂性:外膜改性和使用耐溶剂泵srpABC进行溶剂挤出。与表达TOM-Green的大肠杆菌TG1菌株相比,恶臭假单胞菌S12除对各种有机溶剂具有耐受性外,还表现出对萘的更好耐受性。耐溶剂恶臭假单胞菌S12的应用进一步将1-萘酚的生产率提高了约42%。通过转移耐溶剂泵srpABC基因,将恶臭假单胞菌S12的耐受性转移至对溶剂敏感的大肠杆菌菌株,从而进一步分析其耐溶剂性。在饱和甲苯浓度下,低拷贝数质粒或高拷贝数质粒中带有srpABC基因的工程大肠杆菌菌株均生长。工程化的大肠杆菌菌株还对有毒溶剂(例如大肠杆菌)具有更高的耐受性。与没有srpABC基因的对照大肠杆菌菌株相比,例如癸醇和己烷。通过逆转录酶PCR分析证实了耐溶剂泵浦基因的表达。解决了用于生产化学品的生物催化的主要缺点,并提出了使缺点最小化的方法。在液体-液体双相系统中使用生物催化显着提高了1-萘酚的产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号