首页> 外文学位 >Adaptively radio frequency powered implantable multi-channel bio-sensing microsystem for untethered laboratory animal real-time monitoring.
【24h】

Adaptively radio frequency powered implantable multi-channel bio-sensing microsystem for untethered laboratory animal real-time monitoring.

机译:自适应射频供电的可植入式多通道生物传感微系统,用于不受束缚的实验室动物实时监控。

获取原文
获取原文并翻译 | 示例

摘要

Genetic engineering of mice DNA sequences with real-time physiological monitoring has become the most critical research tool for identifying genetic variation susceptibility to diseases. Genetically engineered mice have been widely used as research vehicles with their physiological data being highly important for advanced biological research. Animal-based research results are expected to make a significant impact in treating similar human diseases. Due to the small size of a laboratory mouse, a miniature, light-weight, wireless, batteryless, and implantable multi-channel bio-sensing microsystem is developed to capture real-time accurate biological signals from an untethered animal in its natural habitat, thus eliminating stress and post-implant trauma-induced information distortion. A reliable radio frequency (RF) powering technique based on inductive coupling allows the batteryless microsystem to be achieved with a small form factor. The RF powering technique widely employed in biomedical applications typically relies on a set of external coil and an implantable coil with a relatively fixed position to inductively couple an external RF energy to an implanted microsystem. However, the proposed microsystem is implanted in a freely roaming mouse; hence resulting in a drastically changing magnetic coupling as the mouse moves and tilts its position with respect to the external stationary coil. Therefore, an optimized remote RF powering system with an adaptive control capability is designed and implemented. The prototype sensing microsystem can detect two vital signals, electrocardiogram (EKG) and core body temperature, and wirelessly transmit the information to a nearby receiver by employing a low power CMOS integrated circuits design with a minimal number of off-chip components for a high-level system integration. The overall implant unit exhibits a dimension of 9 mm x 7 mm x 3 mm and a weight of 400 mg including a pair of stainless steel EKG electrodes. A low power 2 mm x 2 mm integrated circuit, consisting of an EKG amplifier, a proportional-to-absolute-temperature (PTAT) circuit, an RF power-level sensing circuit, an RF-to-DC power converter, an 8-bit analog-to-digital converter, a digital control unit, and a wireless transmitter, is designed and fabricated in a 1.5microm CMOS process. An adaptively controlled external RF energy at 4 MHz is employed to ensure an on-chip stable 2V supply with a 156 microA current driving capability for the overall microsystem. This technique limits the on-chip voltage variation to ensure a proper electronic operation and reliable implant power, and also minimizes the external power dissipation; hence the environment temperature rise. Untethered laboratory mice implant study demonstrates the microsystem capability of capturing real-time EKG and core body temperature information under a wireless and batteryless condition. Other biological sensing channels such as blood pressure and activity signals can be potentially integrated with the system architecture.
机译:具有实时生理监测功能的小鼠DNA序列的基因工程已成为鉴定疾病遗传变异易感性的最关键研究工具。基因工程小鼠已被广泛用作研究工具,其生理数据对高级生物学研究非常重要。基于动物的研究结果有望对治疗类似的人类疾病产生重大影响。由于实验室鼠标的体积小,因此开发了一种微型,轻便,无线,无电池且可植入的多通道生物传感微系统,以捕获来自其自然栖息地中不受束缚的动物的实时准确的生物信号,因此消除压力和植入后创伤引起的信息失真。基于电感耦合的可靠射频(RF)供电技术可实现无电池微型系统的小型化。在生物医学应用中广泛使用的RF供电技术通常依赖于一组外部线圈和具有相对固定位置的可植入线圈,以将外部RF能量感应耦合到植入的微系统。但是,拟议的微系统被植入了自由漫游的老鼠中。因此,当鼠标相对于外部固定线圈移动和倾斜时,磁耦合将急剧变化。因此,设计并实现了具有自适应控制能力的优化远程射频供电系统。原型传感微系统可以检测两个重要信号,即心电图(EKG)和核心体温,并通过采用低功耗CMOS集成电路设计和最少数量的片外组件来实现高生命周期的无线传输,将信息无线传输到附近的接收器。级系统集成。整个植入物单元的尺寸为9 mm x 7 mm x 3 mm,重量为400 mg,包括一对不锈钢EKG电极。低功耗2mm x 2mm集成电路,由EKG放大器,比例至绝对温度(PTAT)电路,RF功率电平检测电路,RF-DC功率转换器,一个8位的模数转换器,数字控制单元和无线发射器,是通过1.5微米CMOS工艺设计和制造的。采用4 MHz的自适应控制的外部RF能量来确保片上稳定的2V电源,并为整个微系统提供156 microA的电流驱动能力。该技术限制了芯片上的电压变化,以确保正确的电子操作和可靠的植入功率,并最大程度地降低了外部功耗。因此环境温度升高。不受束缚的实验室小鼠植入物研究证明了在无线和无电池条件下捕获实时心电图和核心体温信息的微系统能力。其他生物传感通道(例如血压和活动信号)可以潜在地与系统架构集成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号