首页> 外文学位 >An investigation of phenolic glycoside and condensed tannin homeostasis in Populus by salicyl alcohol feeding to cell cultures and by transgenic manipulation of the sucrose transporter, PtSUT4, in planta.
【24h】

An investigation of phenolic glycoside and condensed tannin homeostasis in Populus by salicyl alcohol feeding to cell cultures and by transgenic manipulation of the sucrose transporter, PtSUT4, in planta.

机译:通过向植物培养物中添加水杨醇和转基因操作蔗糖转运蛋白PtSUT4的方法,对杨树中的酚苷和单宁浓缩态进行了研究。

获取原文
获取原文并翻译 | 示例

摘要

Secondary metabolites play an important role in plant protection against biotic and abiotic stress. In Populus, phenolic glycosides (PGs) and condensed tannins (CTs) are two such groups of compounds derived from the common phenylpropanoid pathway. The basal levels and the inducibility of PGs and CTs depend on genetic as well as environmental factors, such as soil nitrogen (N) level. Carbohydrate allocation, transport and sink strength also affect PG and CT levels. A negative correlation between the levels of PGs and CTs was observed in several studies. However, the molecular mechanism underlying such relation is not known. We used a cell culture system to understand negative correlation of PGs and CTs. Under normal culture conditions, neither salicin nor higher-order PGs accumulated in cell cultures. Several factors, such as hormones, light, organelles and precursors were discussed in the context of aspen suspension cells' inability to synthesize PGs. Salicin and its isomer, isosalicin, were detected in cell cultures fed with salicyl alcohol, salicylaldehyde and helicin. At higher levels (5 mM) of salicyl alcohol feeding, accumulation of salicins led to reduced CT production in the cells. Based on metabolic and gene expression data, the CT reduction in salicin-accumulating cells is partly a result of regulatory changes at the transcriptional level affecting carbon partitioning between growth processes, and phenylpropanoid CT biosynthesis. Based on molecular studies, the glycosyltransferases, GT1-2 and GT1-246, may function in glycosylation of simple phenolics, such as salicyl alcohol in cell cultures. The uptake of such glycosides into vacuole may be mediated to some extent by tonoplast localized multidrug-resistance associated protein transporters, PtMRP1 and PtMRP6.;In Populus, sucrose is the common transported carbohydrate and its transport is possibly regulated by sucrose transporters (SUTs). SUTs are also capable of transporting simple PGs, such as salicin. Therefore, we characterized the SUT gene family in Populus and investigated, by transgenic analysis, the possible role of the most abundantly expressed member, PtSUT4, in PG-CT homeostasis using plants grown under varying nitrogen regimes. PtSUT4 transgenic plants were phenotypically similar to the wildtype plants except that the leaf area-to-stem volume ratio was higher for transgenic plants. In SUT4 transgenics, levels of non-structural carbohydrates, such as sucrose and starch, were altered in mature leaves. The levels of PGs and CTs were lower in green tissues of transgenic plants under N-replete, but were higher under N-depleted conditions, compared to the levels in wildtype plants. Based on our results, SUT4 partly regulates N-level dependent PG-CT homeostasis by differential carbohydrate allocation.
机译:次生代谢产物在植物抵抗生物和非生物胁迫方面起着重要作用。在胡杨中,酚类糖苷(PGs)和缩合单宁(CTs)是衍生自常见苯丙烷途径的两组这类化合物。 PGs和CTs的基础水平和诱导能力取决于遗传和环境因素,例如土壤氮(N)水平。碳水化合物的分配,运输和吸收强度也会影响PG和CT水平。在几项研究中,PGs和CTs水平之间呈负相关。但是,这种关系的分子机制尚不清楚。我们使用细胞培养系统来了解PG和CT的负相关。在正常的培养条件下,水杨素和高阶PG都不在细胞培养物中积累。在白杨悬浮细胞无法合成PG的背景下,讨论了一些因素,例如激素,光,细胞器和前体。在以水杨醇,水杨醛和螺旋藻为食的细胞培养物中检测到水杨素及其异构体异水杨素。在较高水平(5 mM)的水杨醇喂养下,水杨素的积累导致细胞中CT的产生减少。根据代谢和基因表达数据,水杨素积聚细胞的CT降低部分是由于转录水平的调节变化影响了生长过程之间的碳分配以及苯丙烷类CT生物合成。根据分子研究,糖基转移酶GT1-2和GT1-246可能在简单的酚类化合物(例如细胞培养物中的水杨醇)的糖基化中起作用。液泡中此类糖苷的摄取可能在一定程度上受到液泡膜定位的多药耐药相关蛋白转运蛋白PtMRP1和PtMRP6的介导。在杨树中,蔗糖是常见的转运碳水化合物,其转运可能受蔗糖转运蛋白(SUTs)调节。 SUT还能够运输简单的PG,例如水杨素。因此,我们表征了胡杨中的SUT基因家族,并通过转基因分析,研究了在氮含量不同的条件下种植的植物中,PGt CT动态平衡中表达最丰富的成员PtSUT4的可能作用。 PtSUT4转基因植物在表型上与野生型植物相似,只是转基因植物的叶面积/茎干体积比更高。在SUT4转基因中,成熟叶片中非结构性碳水化合物(如蔗糖和淀粉)的水平发生了变化。与野生型植物相比,在氮充足的条件下,转基因植物绿色组织中的PGs和CTs含量较低,而在氮不足的条件下,其绿色组织中的PGs和CTs含量较高。根据我们的结果,SUT4通过差异化碳水化合物分配来部分调节N水平依赖性的PG-CT稳态。

著录项

  • 作者

    Payyavula, Raja Sekhar.;

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Biology Molecular.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号