首页> 外文学位 >Atomic scale fabrication and characterization of novel one-dimensional organosilicon nanostructures: A scanning tunneling microscopy study.
【24h】

Atomic scale fabrication and characterization of novel one-dimensional organosilicon nanostructures: A scanning tunneling microscopy study.

机译:新型一维有机硅纳米结构的原子尺度制备和表征:扫描隧道显微镜研究。

获取原文
获取原文并翻译 | 示例

摘要

The electronic and chemical properties of organic functionalized silicon surfaces have received significant attention not only from a fundamental perspective, but also due to the technological relevance for electronic and biological and chemical sensing applications. A particular class of organic molecules, which self-assemble into one-dimensional chains covalently bound on Si(100)-2x1:H, reveal interesting binding chemistries and electronic properties depending on the terminal group of the molecule and the reaction sites at the surface. An ultra-high vacuum (UHV) scanning tunneling microscope (STM) was used to discern the atomic scale chemical binding and electronic properties of several molecules which form one-dimensional nanostructures on Si(100)-2x1:H. In order to demonstrate that replacing deuterium with hydrogen would allow for non-STM studies of the binding configurations of chain growing molecules, deuterium was used in place of hydrogen on either the molecule or the silicon to investigate the reaction mechanism for forward and reverse molecular chain growth. UHV STM studies showed that replacing deuterium with hydrogen on either the molecule or the surface does not inhibit the formation of the molecular nanostructures on the passivated Si(100)-2x1 surface. The o-phthalaldehyde (OP) nanostructure growth mechanism is dependent on the reaction site the molecule binds to at the surface. At a single dangling bond site, OP forms chains attached via a single Si-O covalent bond, while at a dangling bond pair site, the chain is attached via two Si-O covalent bonds on a single silicon dimer. UHV-STM measurements of both the topography and electronic structure reveal distinctive binding configurations of the OP chains. Though chain growth has primarily been observed with 1-alkene and 1-aldehyde molecules, 1-alkyne molecules, namely phenylacetylene (PA), also exhibit chain growth behavior. While some 1-alkynes undergo a two-step reaction with the silicon surface, thus eliminating the double bond attachment, the UHV-STM observed the PA molecules form chains with the C=C double bond intact which leads to a fully conjugated molecular nanostructure. Heteromolecular nanostructures of PA and styrene were fabricated and a difference in the electronic structure was observed over a one volt range. This distinction is attributed to the difference in the electronic properties of the two molecules due to enhanced electronic transport through the conjugated PA nanostructure. By varying the functionality of the PA molecule, additional techniques, such as x-ray photoelectron spectroscopy and sum frequency generation, were used to verify the retention of the double bond in the molecular nanostructures. These studies reveal the important role the binding chemistry plays on the electronic properties and growth kinetics for a variety of molecules, as well as demonstrates the power of the UHV STM as a tool to probe the atomic scale properties of molecular nanostructures.
机译:有机功能化硅表面的电子和化学性质不仅从基本的角度出发,而且由于与电子,生物和化学传感应用相关的技术而受到广泛关注。自组装成共价结合在Si(100)-2x1:H上的一维链的一类特殊的有机分子,根据分子的端基和表面的反应部位,揭示出有趣的结合化学和电子性质。使用超高真空(UHV)扫描隧道显微镜(STM)来识别在Si(100)-2x1:H上形成一维纳米结构的几个分子的原子尺度化学键合和电子性质。为了证明用氢代替氘可以进行链增长分子的结合构型的非STM研究,使用氘代替分子或硅上的氢来研究正向和反向分子链的反应机理增长。 UHV STM研究表明,在分子或表面上用氢取代氘不会抑制钝化Si(100)-2x1表面上分子纳米结构的形成。邻苯二甲醛(OP)纳米结构的生长机理取决于分子在表面结合的反应部位。在一个悬空键位处,OP形成通过单个Si-O共价键连接的链,而在一个悬空键对位处,该链通过两个Si-O共价键连接在一个硅二聚体上。 UHV-STM对形貌和电子结构的测量都揭示了OP链的独特结合构型。尽管主要通过1-烯烃和1-醛分子观察到链增长,但是1-炔烃分子,即苯乙炔(PA),也表现出链增长行为。虽然一些1-炔烃与硅表面进行两步反应,从而消除了双键连接,但UHV-STM观察到PA分子形成了具有完整C = C双键的链,从而形成了完全共轭的分子纳米结构。制备了PA和苯乙烯的分子纳米结构,并在1伏特范围内观察到电子结构的差异。该区别归因于由于通过共轭PA纳米结构的增强的电子传输而导致的两个分子的电子性质的差异。通过改变PA分子的功能,可以使用其他技术(例如X射线光电子能谱和总和频率生成)来验证双键在分子纳米结构中的保留。这些研究揭示了结合化学对多种分子的电子性质和生长动力学的重要作用,并证明了UHV STM作为探测分子纳米结构的原子尺度性质的工具的力量。

著录项

  • 作者

    Walsh, Michael Alan.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Nanoscience.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号