首页> 外文学位 >Finite element analysis and materials characterization of changes due to aging and degeneration of the human intervertebral disc.
【24h】

Finite element analysis and materials characterization of changes due to aging and degeneration of the human intervertebral disc.

机译:人体椎间盘老化和退化引起的变化的有限元分析和材料表征。

获取原文
获取原文并翻译 | 示例

摘要

Intervertebral disc (IVD) degeneration occurs with aging, and may be a major cause of back pain. Alterations in major biochemical constituents of the IVD have been shown to coincide with aging and degeneration, and can subsequently alter the disc's ability to support load. A significant biochemical change that takes place in degeneration is the loss of proteoglycans (PGs) in the nucleus pulposus (NP). PGs work to resist mechanical forces in the NP through hydration of the molecules, providing hydrostatic pressure to the annulus fibrosus (AF).;Poroelastic theory with osmotic swelling, created for the simulation of articular cartilage, is applied to a finite element model (FEM) of a human IVD throughout a daily loading cycle. The model was validated against experimental studies of axial displacement, radial bulge, and fluid volume lost. The incorporation of osmotic swelling allows for the study of the effect of PGs on the mechanics of the IVD.;In this study, the IVD FEM is created and validated, and the response of the model to a diurnal loading cycle is investigated. Various degrees of degeneration are examined, as well as the intervention techniques of a hydrogel NP replacement implant and the restoration of the PG content in the IVD for the restoration of degenerated discs. A NP hydrogel replacement decreases the stresses in the AF, and restoration of the PG content reduces stresses in both the NP and AF, which may lead to deceleration of the degenerative process.;To develop a more reliable and possibly diagnostic tool for the determination of IVD biomolecular components, Fourier transform infrared (FTIR) spectroscopy is investigated for the analysis of IVD tissue. The results of the study suggest FTIR as a dependable method for quantifying degeneration.;The model developed here provides a novel tool for the investigation of IVD tissue mechanics through the diurnal cycle. The incorporation of poroelastic components allows for the investigation of key biomolecular changes that as demonstrated have a marked effect on IVD mechanics. Accurate determination of biomolecular changes in the IVD will allow for a physiologically relevant model to be developed and possible detection of earlier intervention points.
机译:椎间盘退变(IVD)随着年龄的增长而发生,并且可能是背痛的主要原因。体外诊断的主要生化成分的变化已显示出与老化和变性同时发生,并随后可以改变椎间盘支撑负荷的能力。变性中发生的重大生化变化是髓核(NP)中蛋白聚糖(PG)的损失。 PG通过分子的水合作用来抵抗NP中的机械力,从而为纤维环(AF)提供静水压力。;为模拟关节软骨而创建的具有渗透性膨胀的孔隙弹性理论被应用于有限元模型(FEM )在整个每日加载周期中进行人类IVD的操作)。该模型已针对轴向位移,径向凸起和流体体积损失的实验研究进行了验证。渗透溶胀的结合可以研究PG对IVD力学的影响。在本研究中,创建并验证了IVD FEM,并研究了模型对昼夜加载周期的响应。检查了各种程度的变性,以及水凝胶NP替代植入物的干预技术以及IVD中PG含量的恢复,以恢复退化的椎间盘。 NP水凝胶替代物可降低AF中的压力,而PG含量的恢复可降低NP和AF中的压力,这可能导致变性过程的减速。;开发一种更可靠且可能的诊断工具来测定IVD生物分子成分,傅里叶变换红外(FTIR)光谱被研究用于IVD组织的分析。研究结果表明,FTIR是量化变性的可靠方法。此处开发的模型为通过昼夜周期研究IVD组织力学提供了一种新颖的工具。多孔弹性组分的结合允许研究关键的生物分子变化,如所示,这些变化对IVD力学具有显着影响。准确确定IVD中的生物分子变化将允许开发生理相关模型并可能检测早期干预点。

著录项

  • 作者

    Massey, Christopher John.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Mechanical engineering.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号