首页> 外文学位 >Thermal management composites utilizing carbon nanotubes and high-conducting carbon fibers: Design, fabrication and characterization.
【24h】

Thermal management composites utilizing carbon nanotubes and high-conducting carbon fibers: Design, fabrication and characterization.

机译:利用碳纳米管和高导电碳纤维的热管理复合材料:设计,制造和表征。

获取原文
获取原文并翻译 | 示例

摘要

The focus of the dissertation is to find solutions to increase the through-thickness thermal conductivity of fiber-reinforced polymer matrix composites (PMC). The objective is to explore novel concepts and new approaches to improve the through-thickness thermal conductivity up to 30W/mK for PMCs. First, this research involves understanding the principles of thermal transport in composite and nanocomposite materials. Then the research proceeds to model and design high thermal conducting composites and develop fabrication processes and characterization methods for functioning prototype materials.;PMCs are advantageous for their light-weight, excellent strength and high modulus properties. However, due to insulation nature of polymer resin matrices, their bulk composites demonstrate poor through-thickness thermal conductivity making it unsuitable for applications that undergo thermal loads requiring a means for adequate heat dissipation. The research has carried out four technical approaches to achieve high through-thickness thermal conductivity. (1) Conductive Resins: Increasing the thermal conductivity of the matrix would increase the bulk through-thickness thermal conductivity. Experiments have been done using conductive fillers such as metallic nanoparticles and carbon nanotubes. Results have shown increase in the thermal conductivity but with the disadvantage of increased matrix viscosity making the fabrication process difficult. The thermal conductivity increases, however, is not adequate to achieve the objective solely. (2) Stitch Method: This method applies a continuous conductive path by stitching or inserting high conducting materials such as metal wires, high conducting carbon fiber or high conducting carbon yarns in the through-thickness direction of the composites. Experimentally, this method has proven to show a 27 fold increase in the through-thickness thermal conductivity at low volume fraction percentage of 5% with copper wire and 3.5 fold increase using K-1100 carbon yarn. (3) Long MWNT: Long MWNTs should create a conductive microstructure between fiber layers in composites. Providing conductive links improve the thermal transport of phonons, long MWNTs should more effectively provide thermal transport between fiber layers. However, the experimental results have yet to yield any improvements in the thermal properties of the composites. (4) Buckypaper: The use of thin film of dense nanotube networks or buckypapers is to improve the thermal connections between fiber layers as an interlayer material. If the buckypaper can make multiple connections between fiber layers, the nanotube network can be used to facilitate thermal transportation. However, the use of buckypaper has shown to have a reduced thermal conductivity value than that of a composite without buckypaper. Buckypaper in the experiment create resin rich areas between layers.;Modeling efforts were performed to understand thermal transport mechanism, find solutions and predictions to through-thickness thermal conductivity of the multiscale composites. Micromechanical models were used to predict thermal property values for conductive resins as well as nanoparticle/fiber multiscale composites. Results show that only a few models prove useful with close predictions to experimental data. On the other hand, finite element modeling (FEM), allows the exploration of the critical nanoparticle/fiber interactions and their effects on thermal properties of the resultant composites. The FEM results show that it is the interconnections between nanoparticle and fibers, rather than concentration of conductive fillers, significantly impact the through-thickness thermal conductivity in PMCs, where continuous thermal pathways were the most important for performance improvement. Discontinuous pathways of nanotubes and conducting materials showed very limited or no effects on thermal conductivity improvements. These results provide viable information for future design and fabrication of high through-thickness thermal conductivity composite materials for thermal management multifunctional applications.
机译:论文的重点是寻找提高纤维增强聚合物基复合材料(PMC)的全厚度导热率的解决方案。目的是探索新颖的概念和新方法,以将PMC的全厚度热导率提高到30W / mK。首先,这项研究涉及了解复合材料和纳米复合材料中热传输的原理。然后研究着手对高导热复合材料进行建模和设计,并开发出功能性原型材料的制造工艺和表征方法。PMCs具有轻量,优异的强度和高模量特性等优点。然而,由于聚合物树脂基体的绝热特性,它们的本体复合材料表现出较差的贯穿厚度导热性,使其不适合承受需要适当散热的热负荷的应用。该研究已经执行了四种技术方法来实现高厚度的热导率。 (1)导电树脂:增加基体的热导率会增加整个厚度的热导率。已经使用诸如金属纳米颗粒和碳纳米管的导电填料进行了实验。结果显示出热导率的增加,但是具有基体粘度增加的缺点,使得制造过程困难。然而,导热率的增加不足以仅仅实现该目的。 (2)缝合法:该方法通过在复合材料的整个厚度方向上缝合或插入高导电材料(例如金属线,高导电碳纤维或高导电碳纱)来施加连续的导电路径。实验证明,该方法在使用5%的低体积分数百分比的铜线时,可显示全厚度热导率增加27倍,而使用K-1100碳丝则可显示3.5倍。 (3)长MWNT:长MWNT应在复合材料的纤维层之间产生导电微结构。提供导电连接可改善声子的热传递,长的MWNT可更有效地在纤维层之间提供热传递。但是,实验结果尚未对复合材料的热性能产生任何改善。 (4)巴基纸:使用致密的纳米管网络或巴基纸的薄膜是为了改善作为夹层材料的纤维层之间的热连接。如果布基纸可以在纤维层之间建立多个连接,则可以使用纳米管网络来促进热传输。然而,与没有布基纸的复合材料相比,布基纸的使用显示出降低的热导率值。 Buckypaper在实验中在层之间创建了树脂富集区域。进行了建模工作,以了解热传输机理,找到解决方案并预测了多尺度复合材料的全厚度热导率。使用微力学模型来预测导电树脂以及纳米颗粒/纤维多尺度复合材料的热性能值。结果表明,只有少数模型在对实验数据进行精确预测的情况下证明是有用的。另一方面,有限元建模(FEM)允许探索关键的纳米粒子/纤维相互作用及其对所得复合材料热性能的影响。有限元分析结果表明,纳米颗粒和纤维之间的相互连接而不是导电填料的浓度显着影响了PMC的全厚度热导率,其中连续的热通路对于提高性能最为重要。纳米管和导电材料的不连续路径对导热系数的改善影响很小或没有影响。这些结果为将来设计和制造用于热管理多功能应用的高厚度热导复合材料提供了可行的信息。

著录项

  • 作者

    Zimmer, Michael Makoto.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号