首页> 外文学位 >Modelisation des temps de parcours sur un reseau routier a l'aide de donnees de vehicules flottants.
【24h】

Modelisation des temps de parcours sur un reseau routier a l'aide de donnees de vehicules flottants.

机译:使用浮动车辆数据对道路网络上的行程时间进行建模。

获取原文
获取原文并翻译 | 示例

摘要

This research exposes a statistical analysis of travel time observations on critical portions of the Montreal road network. Whereas we have access to odometric data collected by the Ministere des Transports du Quebec (MTQ) between 1998 and 2004 on several highway segments of the Montreal network, the required tasks are: review of existing traffic indicators and the technologies used to gather data, estimate statistically the state of the traffic on the highway network, assess the evolution of traffic on the network, propose a data collection methodology for future sampling of travel times on the road network and, finally, evaluate the reliability of travel times on the Montreal highway network.;For the current research project, floating car data collected by MTQ are processed in an innovative way. Sampled segments have been cut in equally-sized portions. Then, we had to make our data more accurate, by deleting abnormal observations, and observations with missing values. These values are spatial location, timestamp and date of the observation and travel time value.;Thanks to a reliable data collection, we applied a statistic analysis on the data of the first segment (highway 13th, direction South). The conclusions confirm the influence of several factors: month of the year, road conditions, period (AM or PM). This analysis was executed using analysis of variance, and proposes a graphical interface assisting the quality control of observed data.;Then, it appears that the frequency distribution of travel times seem similar for several network segments. That point leads us to consider groups of segments whose frequency distribution of travel times are similar. With a correlation analysis and a clustering algorithm, several groups have been exposed. Furthermore, we chose to evaluate the variability, reliability indicator, for each segment.;All over the world, the different managers of the traffic have been seeing a dramatic evolution of the highway traffic, thus for all kinds of cities. Faced with increasing pressure on the network that make congestion reduction almost impossible, managers now aim at better assessing this evolution and the impacts of various types of incident to provide more reliable network with respect to travel times. In fact, managers are not trying to eradicate congestion anymore, but try to measure congestion and anticipate the causes and consequences of an incident on the traffic. To allow this new concept, several technologies are used and very often used at the same time: static technologies (induction loops, radar, camera), and mobile technologies (floating cars, and more recently, Bluetooth and Cellular).;In order to complete the sampling requirement, and thanks to the previous analysis, we could compute a sampling frame based on the variability of travel times. Seeing the complexity of making such a sample, we used the results of the clustering algorithm and improve the future data collecting method by reducing the number of required samples. We applied this algorithm on every segment considering the differences of the number of actual samples collected per segment between 1998 and 2004.;Then, whereas the idea of clustering has been studied, we also noticed the singular form of the frequency distribution of travel times. Consequently, we applied a modelling to that distribution. From this modelling, we have been able to simulate the mean and the variability of travel times and develop several new indicators: risk of incident indicator, and Mean-Variability indicator. This last indicator can be used mathematically by the manager of the traffic or by the road user in his categorical form.;Finally, thanks to these last results, we have chosen to study the year 2004 in front of the results for all of the sampled years, in order to expose a critical evolution of the traffic on the first segment. The conclusions seem to tell us that no dramatic evolution of travel times has occurred on this segment.;The conclusions are the followings: we proved the influence of several factors, propose a sampling method based on the variability and the clustering algorithm, model the distribution of travel times, simulate mean and variability and develop new indicators. This leads to various applications. Since the modelling of the distribution is currently poor for some circuits, we will have to try a new method: add several factors to our data, like the type of way, the presence of crossing ways, etc, and apply the clustering algorithm on the entire collection of portions. Followed by a modelling of the frequency distribution of each newly created group, we will be able to simulate mean and variability, and give new values to the previously created indicators. Consequently, we will be able to propose a new sampling, with a new definition of segments.
机译:这项研究揭示了对蒙特利尔道路网关键部分的出行时间观测的统计分析。尽管我们可以访问魁北克交通运输部(MTQ)在1998年至2004年之间在蒙特利尔网络的多个高速公路路段上收集的里程数数据,但所需的任务是:审查现有的交通指标以及用于收集数据的技术,估算统计高速公路网络上的交通状况,评估网络上的交通发展,提出数据收集方法以用于未来道路网络上的行驶时间采样,最后评估蒙特利尔高速公路网络上行驶时间的可靠性。;对于当前的研究项目,以创新的方式处理MTQ收集的浮动汽车数据。已将采样段切成相等大小的部分。然后,我们必须通过删除异常观测值和缺失值的观测值来使数据更准确。这些值是空间位置,时间戳记和观测日期以及旅行时间值。;由于数据收集可靠,我们对第一部分(13号高速公路,南向)的数据进行了统计分析。结论证实了几个因素的影响:一年中的月份,路况,期间(上午或下午)。该分析是使用方差分析执行的,并提出了一个图形界面,以辅助对所观察到的数据进行质量控制。这一点使我们考虑了行进时间的频率分布相似的线段组。通过相关性分析和聚类算法,已经暴露了几个组。此外,我们选择评估每个部分的可变性,可靠性指标。在世界各地,交通的不同管理者都见证了高速公路交通的戏剧性变化,从而影响了各种城市。面对不断增加的网络压力(几乎无法减少拥塞),管理人员现在的目标是更好地评估这种演变以及各种事件的影响,以提供相对于旅行时间而言更可靠的网络。实际上,管理人员不再试图消除拥塞,而是尝试测量拥塞并预测交通事故的原因和后果。为了允许这个新概念,使用了多种技术,并且经常同时使用几种技术:静态技术(感应环,雷达,摄像头)和移动技术(浮动汽车,以及最近的蓝牙和蜂窝技术)。完成采样要求,并且由于之前的分析,我们可以根据行驶时间的变化来计算采样帧。鉴于制作此类样本的复杂性,我们使用了聚类算法的结果,并通过减少了所需样本的数量来改进了将来的数据收集方法。考虑到1998年到2004年之间每个分段收集的实际样本数量的差异,我们将该算法应用于每个分段;然后,虽然研究了聚类的思想,但我们也注意到了旅行时间频率分布的奇异形式。因此,我们将模型应用于该分布。通过这种建模,我们已经能够模拟旅行时间的均值和变异性,并开发了几个新指标:事故风险指标和均值变异性指标。最后一个指标可以由交通管理者或道路使用者以其分类形式在数学上使用。最后,由于有了这些最后的结果,我们选择在所有抽样的结果之前研究2004年。年,以揭示第一部分流量的关键演变。结论似乎告诉我们,在该路段上没有旅行时间的急剧变化。结论如下:我们证明了几个因素的影响,提出了基于变异性和聚类算法的抽样方法,对分布进行建模行程时间,模拟均值和变异性并开发新指标。这导致了各种应用。由于目前对某些电路的分布建模较差,我们将不得不尝试一种新方法:向我们的数据中添加几个因素,例如路的类型,交叉路的存在等,然后将聚类算法应用到部分的整个集合。在对每个新创建的组的频率分布进行建模之后,我们将能够模拟均值和变异性,并为先前创建的指标提供新的值。因此,我们将能够提出新的抽样,并具有新的细分定义。

著录项

  • 作者

    Loustau, Pierre.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Civil.;Engineering Industrial.
  • 学位 M.Sc.A.
  • 年度 2009
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号