首页> 外文学位 >How many fish are there and how many can we kill? Improving catch per effort indices of abundance and evaluating harvest control rules for lake whitefish in the Great Lakes.
【24h】

How many fish are there and how many can we kill? Improving catch per effort indices of abundance and evaluating harvest control rules for lake whitefish in the Great Lakes.

机译:那里有几条鱼,我们可以杀死几条?改善大湖捕捞努力指标,评估大湖中白鲑的收获控制规则。

获取原文
获取原文并翻译 | 示例

摘要

My dissertation has two main objectives: (1) to explore alternative ways to use commercial lake whitefish fishery catch per effort (CPE) data as an index of abundance in 1836 Treaty-ceded waters of the Great Lakes, and (2) to evaluate alternative harvest control rules for lake whitefish. Chapter 1 was directed at exploring alternative ways to use commercial lake whitefish fishery CPE data, while Chapters 2 and 3 covered topics related to harvest control rules.;Fishery CPE data is often used to assess relative fish abundance, and assessments used in 1836 Treaty-ceded waters of the Great Lakes assume that commercial CPE (i.e., ratio of aggregate catch to aggregate effort in each year) from gill-net and trap-net fisheries is proportional to abundance. However, CPE may change due to factors other than abundance. In Chapter 1, I developed general linear mixed models (GLMMs) to account for sources of variation in CPE unrelated to abundance, and used the least-squares means (LSMs) for each year as an alternative to the current index of abundance. Effects such as license holder, boat size, and month accounted for much of the variation in CPE. LSMs and the current CPE index displayed different temporal trends among years in some areas, suggesting the importance of adjusting fishery CPE for effects like boat size, season, and license holder.;Harvest policies use control rules to dictate how fishing mortality or catch and yield levels are determined. Common control rules include constant catch, constant fishing mortality rate, and constant escapement. The "best" control rules for meeting common fishery objectives (e.g., maximizing yield) is a source of controversy in the literature, and results are seemingly contradictory. In Chapter 2, I conducted a detailed review of the relevant harvest control rule literature to compare control rules for their ability to meet widely used fishery objectives and identify potential causes for contradictory results. The relative performance of control rules at meeting common fishery objectives was affected by: fishery objectives, whether uncertainty in estimated stock sizes was included in analyses, whether the maximum recruitment level was varied in an autocorrelated fashion over time, how policy parameters were chosen, and the amount of compensation in the stock-recruit relationship. More research is needed to compare control rules while considering these and related factors.;In Chapter 3, I used an age-structured simulation model that incorporated stochasticity in life history traits and multiple uncertainties to compare the current harvest control rule for lake whitefish (constant fishing rate; CF) with a range of alternative control rules, including conditional constant catch (CCC), biomass-based (BB), and CF and BB rules with a 15% limit on the interannual change in the target catch. The CF and BB rules simultaneously attained higher average yield and spawning stock biomass than other control rules, while the CCC rule and limiting the target catch changes by 15% had the lowest yearly variability in yield. The low yearly variability in yield provided by limiting target catch changes to 15% comes at the cost of frequently reducing biomass to low levels, so that in many situations other control rules would be preferred.
机译:我的论文有两个主要目标:(1)探索使用其他方法将商业上的白鲑捕捞努力数(CPE)数据用作1836年《大湖条约》割让水域的丰度指标,以及(2)评价替代方案白鲑湖的收获控制规则。第1章旨在探讨使用商业性湖泊白鲑渔业CPE数据的替代方法,而第2章和第3章涵盖与收获控制规则有关的主题。渔业CPE数据通常用于评估相对鱼的丰度,以及1836年《条约》中使用的评估五大湖的割让水假定assume鱼网和陷阱网渔业的商业CPE(即,每年总捕获量与总工作量之比)与丰度成正比。但是,CPE可能会由于丰度以外的因素而发生变化。在第1章中,我开发了通用线性混合模型(GLMM)来说明与丰度无关的CPE的变化来源,并使用每年的最小二乘均方(LSM)替代当前的丰度指数。 CPE的差异很大,例如许可证持有人,船的大小和月份等影响。 LSM和当前的CPE指数在某些地区的年间显示出不同的时间趋势,表明调整渔业CPE的重要性,如船的尺寸,季节和执照持有人。确定水平。常见的控制规则包括恒定的捕获量,恒定的捕鱼死亡率和恒定的逃逸。满足共同渔业目标(例如,使产量最大化)的“最佳”控制规则在文献中引起争议,结果似乎矛盾。在第二章中,我对相关的捕捞控制规则文献进行了详细的回顾,以比较控制规则满足广泛使用的渔业目标的能力,并找出导致结果矛盾的潜在原因。控制规则在实现共同渔业目标方面的相对绩效受到以下因素的影响:渔业目标,分析中是否包括估计种群的不确定性,最大​​招募水平是否随时间以自相关的方式变化,如何选择政策参数以及股票-招聘关系中的补偿金额。在考虑这些因素和相关因素的同时,还需要进行更多的研究来比较控制规则。在第3章中,我使用了年龄结构模拟模型,该模型将随机性纳入了生活史特征和多种不确定性中,以比较当前对白鲑的收获控制规则(恒定捕捞率; CF)以及一系列替代控制规则,包括有条件的恒定捕获量(CCC),基于生物量的捕获量(BB),以及CF和BB规则,目标捕获量的年际变化限制为15%。与其他控制规则相比,CF和BB规则同时获得了更高的平均产量和产卵生物量,而CCC规则和将目标捕捞量限制在15%以内的年度可变性最低。通过将目标捕捞量限制在15%以内,每年产量的低波动性是以经常将生物量减少到较低水平为代价的,因此在许多情况下,其他控制规则将是首选。

著录项

  • 作者

    Deroba, Jonathan J.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Biology Biostatistics.;Agriculture Fisheries and Aquaculture.;Biology Limnology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号