首页> 外文学位 >Integration of satellite remote sensing and ground-based measurements for modelling the spatiotemporal distribution of fine particulate matter at a regional scale.
【24h】

Integration of satellite remote sensing and ground-based measurements for modelling the spatiotemporal distribution of fine particulate matter at a regional scale.

机译:集成了卫星遥感技术和地面测量技术,可以对区域规模的细颗粒物的时空分布进行建模。

获取原文
获取原文并翻译 | 示例

摘要

Accurate information on the spatial-temporal distributions of air pollution at a regional scale is crucial for effective air quality control, as well as to impact studies on local climate and public health. The current practice of mapping air quality relies heavily on data from monitoring stations, which are often quite sparse and irregularly spaced. The research presented in this dissertation seeks to advance the methodologies involved in spatiotemporal analysis of air quality that integrates remotely-sensed data and in situ measurement. Aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) is analyzed to estimate fine particulate matter (PM2.5) concentrations as the target air pollutant.;The spatial-temporal distribution of columnar aerosol loading is investigated through mapping MODIS AOD in southern Ontario, Canada throughout 2004. Clear distribution patterns and strong seasonality are found for the study area. There is a detectable relationship between an AOD level and underlying land use structure and topography on the ground. MODIS AOD was correlated with the ground-level PM2.5 concentration (GL-[PM2.5]) at various wavelengths. The AOD-PM2.5 correlation is found to be sensitive to spatial-temporal scale changes. Further, a semi-empirical model has been developed for a more accurate prediction of GL-[PM2.5]. The model employs MODIS AOD data, assimilated meteorological fields, and ground-based meteorological measurements and is able to explain 65% of the variability in GL-[PM2.5]. To achieve a more accurate and informative spatiotemporal modelling of GL-[PM2.5], a method is proposed that integrates the model-predictions and in situ measurements in the framework of Bayesian Maximum Entropy (BME) analysis. A case study of southern Ontario demonstrates the procedures of the method and support for its advantages by comparison with conventional geostatistical approaches. The BME estimation, coupled with BME posterior variance, can be used to depict GL-[PM2.5 ] distribution in a stochastic context. The methodologies covered in this work are expected to be applicable to the modelling or analysis of other types of air pollutant concentrations.
机译:关于区域空气污染的时空分布的准确信息对于有效控制空气质量以及影响对当地气候和公共卫生的研究至关重要。当前绘制空气质量的方法在很大程度上依赖于来自监测站的数据,这些数据通常非常稀疏且间隔不规则。本文提出的研究旨在推进结合遥感数据和现场测量的空气质量时空分析方法。分析了中分辨率成像光谱仪(MODIS)的气溶胶光学深度(AOD)数据,以估算作为目标空气污染物的细颗粒物(PM2.5)浓度。;通过映射MODIS研究了柱状气溶胶负载的时空分布整个2004年,加拿大安大略省南部都有AOD。研究区域的分布格局清晰,季节性强。 AOD等级与底层土地利用结构和地面地形之间存在可检测的关系。 MODIS AOD与各种波长下的地面PM2.5浓度(GL- [PM2.5])相关。发现AOD-PM2.5相关性对时空尺度变化敏感。此外,已经开发了半经验模型来更精确地预测GL- [PM2.5]。该模型利用MODIS AOD数据,同化气象场和地面气象测量,能够解释GL- [PM2.5]的65%的变异性。为了实现GL- [PM2.5]的时空建模的更准确和有益,提出了一种在贝叶斯最大熵(BME)分析框架内将模型预测和现场测量相结合的方法。与常规地统计方法相比,安大略省南部的案例研究证明了该方法的程序及其优势。 BME估计与BME后验方差相结合,可用于描述随机上下文中的GL- [PM2.5]分布。预期这项工作中涵盖的方法将适用于其他类型的空气污染物浓度的建模或分析。

著录项

  • 作者

    Tian, Jie.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Geography.;Remote Sensing.;Environmental Studies.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号