首页> 外文学位 >A homeodomain transcription factor controls neural circuits formation in mammalian forebrain.
【24h】

A homeodomain transcription factor controls neural circuits formation in mammalian forebrain.

机译:同源域转录因子控制哺乳动物前脑中神经回路的形成。

获取原文
获取原文并翻译 | 示例

摘要

Gastrulation brain homeobox 2 gene (Gbx2), encoding a homeodomain transcription factor, is expressed in the mantle zone of the MGE/AEP, the thalamus, the hindbrain and spinal cord in mouse embryos. It has been shown to be a key regulator of genetic programs governing the development of hindbrain. However, its function in the forebrain is poorly understood. In this thesis we demonstrate its role in compartment formation, axon guidance and neural migration of forebrain neurons.;Specifically, we demonstrate here that Gbx2-expressing cells in mouse diencephalon contribute to the entire thalamic nuclear complex. The Gbx2-expressing cells and their descendents form sharp lineage-restriction boundaries. Without Gbx2, cells originating from the thalamus abnormally contribute to the epithalamus and pretectum. Chimeric and genetic mosaic analysis demonstrate that Gbx2 regulates an extracellular signaling pathway that controls segregation of postmitotic thalamic neurons from the neighboring brain structures that do not express Gbx2.;Furthermore, we found that Gbx2-deficient thalamic axons project in abnormal directions. By chimeric analysis, we demonstrate that Gbx2 cell-autonomously specifies the directional outgrowth of TCAs. Through microarray analysis, we found that loss of Gbx2 led to a profound change of in the repertoire of axon guidance molecules. Thalamic neurons in Gbx2 mutant embryos acquired expression profile of axon guidance molecules of epithalamus.;Finally, by performing inducible genetic fate mapping analysis, we demonstrate that cells that express Gbx2 in the medial ganglion eminence contribute exclusively to cholinergic interneurons in the striatum. We show that Gbx2 is essential in restraining neurites growth of immature cholinergic interneurons. Loss of Gbx2 leads to increased complexity of neurites branching and possibly account for the impaired migration of cholinergic progenitor cells. In Gbx2 mutant embryos, early born cholinergic interneuron shift their migration routes, while the late born cells failed to migrate into striatum. As a result, specific deletion of Gbx2 in the ventral telencephalon leads to a significant reduction in the number of cholinergic neurons in the striatum of adult mice. In addition, the absence of later born cells abolishes the graded maturation pattern of striatal cholinergic interneuron population in the caudate-putamen during the first week after birth.
机译:在小鼠胚胎的MGE / AEP,丘脑,后脑和脊髓的上皮区中表达了编码同源结构域转录因子的胃胚神经同源盒2基因(Gbx2)。已经证明它是控制后脑发育的遗传程序的关键调节剂。但是,其在前脑中的功能知之甚少。在本论文中,我们证明了它在前脑神经元的区室形成,轴突引导和神经迁移中的作用。具体而言,我们在这里证明了小鼠双脑中表达Gbx2的细胞对整个丘脑核复合物有贡献。表达Gbx2的细胞及其后代形成了清晰的谱系限制边界。没有Gbx2,源自丘脑的细胞会异常地参与上丘脑和前庭。嵌合和遗传镶嵌分析表明,Gbx2调节细胞外信号通路,控制有丝分裂后丘脑神经元与不表达Gbx2的相邻脑结构的分离。此外,我们发现Gbx2缺陷的丘脑轴突向异常方向投射。通过嵌合分析,我们证明了Gbx2细胞自主指定了TCA的定向生长。通过微阵列分析,我们发现Gbx2的丢失导致轴突引导分子库的深刻变化。 Gbx2突变体胚胎中的丘脑神经元获得了上皮轴突导向分子的表达谱。最后,通过进行诱导性遗传命运图谱分析,我们证明了在内侧神经节隆起中表达Gbx2的细胞仅对纹状体中的胆碱能中间神经元有贡献。我们显示,Gbx2在抑制未成熟胆碱能神经元的神经突生长中至关重要。 Gbx2的丢失导致神经突分支的复杂性增加,并可能导致胆碱能祖细胞迁移受损。在Gbx2突变体胚胎中,早生的胆碱能中间神经元改变了它们的迁移路径,而晚生的细胞未能迁移到纹状体中。结果,腹侧端脑中Gbx2的特异性缺失导致成年小鼠纹状体中胆碱能神经元数量的显着减少。此外,出生后第一周,尾核-丘脑中纹状体胆碱能中间神经元种群的分级成熟模式消失,从而消除了后代细胞的消失。

著录项

  • 作者

    Chen, Li.;

  • 作者单位

    University of Connecticut.;

  • 授予单位 University of Connecticut.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号