首页> 外文学位 >Silicon based nanocomposites as lithium-ion battery anodes.
【24h】

Silicon based nanocomposites as lithium-ion battery anodes.

机译:硅基纳米复合材料可作为锂离子电池阳极。

获取原文
获取原文并翻译 | 示例

摘要

In this research, different silicon based nanocomposites have been developed and studied as potential anode materials for high-energy density lithium-ion batteries. The main challenge to use silicon as lithium-ion anode material is the pulverization caused by the tremendous volume changes associated with the phase transitions during electrochemical cycling, which eventually leads to the failure of electrode due to loss of electronic contact between active material particles.;Si/C/Al composite powders have been synthesized by thermal treatment of high-energy mechanically milled composite precursors comprising graphite, silicon, aluminium and polymethacrylonitrile. The polymer has been used to suppress the interfacial diffusion reactions between graphite, silicon and aluminium, which otherwise lead to the formation of electrochemically inactive SiC and Al4C3 intermetallics during high energy mechanical milling. The resultant Si/C/Al composite of nominal composition 75wt.% C-20wt.% Si-5wt.% Al exhibits a reversible capacity of ∼650mAh/g up to 30 cycles at a charge/discharge rate of ∼340mA/g. Scanning electron microscopy analysis of electrochemically cycled electrodes indicates that the microstructural stability and the structural integrity of the Si/C/Al composite is retained during electrochemical cycling contributing to the good cyclability demonstrated by the composites.;Nanocomposite comprising silicon (Si), graphite (C) and SWNTs, denoted as Si/C/SWNTs, has been synthesized by dispersing SWNTs via high-power ultrasonication into a pre-milled Si/C composite mixture, followed by subsequent thermal treatment. The Si/C powder was prepared by high-energy mechanical milling (HEMM) in which polymethacrylonitrile (PMAN) was used to act as a diffusion barrier to suppress the mechanochemical reaction between silicon and graphite to form undesired electrochemically inactive SiC and further prevent the amorphization of graphite during extended milling. A nanocomposite with nominal composition of Si-35 wt.% SWNTs-37 wt.% exhibits a reversible discharge capacity of ∼900mA/g with an excellent capacity retention of capacity loss of 0.3% per cycle up to 30 cycles. Functionalization of the SWNTs with LiOH significantly improves the cyclability of the nanocomposite containing Si-45 wt.% SWNTs-28 wt.% exhibiting a reversible capacity of 1066 mAh/g displaying almost no fade in capacity up to 30 cycles. The improved electrochemical performance is hypothesized to be attributed to the formation of a nanoscale conductive network by the dispersed SWNTs which successfully results in maintaining electrical contact between the electrochemically active particles during cycling. (Abstract shortened by UMI.);To tackle this problem, the research approach proposed in this study is to directly form active-inactive nanocomposites ex-situ prior to any electrochemical reactions aiming to capitalize on the advantages provided by nanoparticle, nanotubes, and the active-inactive composite interfaces. The feasibility of using Si/C/Al, Si/C/SWNTs (single-walled carbon nanotubes) nanocomposites, Si/MWNTs (multi-walled carbon nanotubes) hybrid nanocomposite, and Si/MWNTs hierarchical electrode as potential lithium-ion battery anodes is studied.
机译:在这项研究中,已经开发和研究了不同的硅基纳米复合材料作为高能量密度锂离子电池的潜在阳极材料。使用硅作为锂离子阳极材料的主要挑战是由于与电化学循环过程中相变相关的巨大体积变化引起的粉碎,最终由于活性材料颗粒之间的电子接触损失而导致电极故障。通过对包括石墨,硅,铝和聚甲基丙烯腈的高能机械研磨的复合前体进行热处理,合成了Si / C / Al复合粉末。该聚合物已被用来抑制石墨,硅和铝之间的界面扩散反应,否则会在高能机械研磨过程中导致形成电化学惰性的SiC和Al4C3金属间化合物。标称组成为75wt。%C-20wt。%Si-5wt。%Al的所得Si / C / Al复合材料在〜340mA / g的充电/放电速率下最多可循环30个循环,显示〜650mAh / g的可逆容量。电化学循环电极的扫描电子显微镜分析表明,Si / C / Al复合材料在电化学循环过程中保留了微结构稳定性和结构完整性,这有助于该复合材料表现出良好的循环性能。纳米复合材料包含硅(Si),石墨( C)和SWNT,表示为Si / C / SWNT,是通过将高功率超声将SWNT分散到预研磨的Si / C复合混合物中,随后进行热处理而合成的。 Si / C粉末是通过高能机械研磨(HEMM)制备的,其中使用聚甲基丙烯腈(PMAN)作为扩散阻挡层来抑制硅和石墨之间的机械化学反应,从而形成不希望的电化学惰性SiC并进一步防止非晶化扩展铣削过程中产生的石墨。具有Si-35 wt。%SWNTs-37 wt。%的标称组成的纳米复合材料具有约900mA / g的可逆放电容量,具有出色的容量保持能力,每循环最多可保持0.3%的容量损失,最多30个循环。用LiOH对SWNTs进行功能化可显着改善含Si-45 wt。%SWNTs-28 wt。%的纳米复合材料的循环能力,SWNTs-28 wt。%的可逆容量为1066 mAh / g,在30次循环后几乎没有衰减。假定电化学性能的改善归因于分散的SWNT形成纳米级导电网络,这成功地导致在循环期间维持电化学活性颗粒之间的电接触。为了解决这个问题,本研究提出的研究方法是在任何电化学反应之前直接利用异源形式形成活性-非活性纳米复合材料,以利用纳米颗粒,纳米管和纳米管的优势。主动/非主动复合接口。使用Si / C / Al,Si / C / SWNTs(单壁碳纳米管)纳米复合材料,Si / MWNTs(多壁碳纳米管)杂化纳米复合材料和Si / MWNTs分层电极作为潜在的锂离子电池阳极的可行性被研究。

著录项

  • 作者

    Wang, Wei.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号