首页> 外文学位 >Space-time block codes with low maximum-likelihood decoding complexity.
【24h】

Space-time block codes with low maximum-likelihood decoding complexity.

机译:空时分组码的最大似然解码复杂度低。

获取原文
获取原文并翻译 | 示例

摘要

Multipath fading has been long viewed as an impairment in wireless communication systems that limits the reliability and data rate of the communication link. By deploying multiple antennas at the transmitter and receiver, multipath fading can be turned into an advantage, allowing for greater reliability and higher data rates than would otherwise be possible. Furthermore, the rate and reliability benefits can be achieved without extra cost of bandwidth, making multiple antenna technology a cornerstone of current and future wireless systems.;The potential benefits of multiple antenna systems can be harnessed through the use of space-time coding. In space-time coding, information symbols are coded across two dimensions, the spatial dimension, which corresponds to the multiple antennas at the transmitter, and time dimension, which corresponds to the multiple signaling intervals. In this thesis, we focus on linear space-time block codes, in which the information symbols are linearly combined to form a two-dimensional code matrix, wherein the rows of the matrix correspond to transmission across multiple intervals, and the columns of the matrix correspond to transmission from different antennas.;In this thesis, we consider the problem of designing space-time block codes that have low maximum-likelihood (ML) decoding complexity. We first present a unified framework for determining the worst-case ML decoding complexity of space-time block codes. We use this framework to not only determine the worst-case ML decoding complexity of our own constructions, but also to show that some popular constructions of space-time block codes have lower ML decoding complexity than was previously known. Specifically, we show that the golden code, which harnesses both the reliability and rate benefits of the two-input two-output channel, has a worst-case ML decoding complexity that is substantially lower than that of an exhaustive-search decoder.;Recognizing the practical importance of the two transmit and two receive antenna system, we propose the asymmetric golden code, which is designed specifically for low ML decoding complexity. Unlike some previous constructions, which lose their reduced complexity decoding when the channel varies during the transmission period of the code matrix, the asymmetric golden code maintains its low decoding complexity regardless of channel variability. The asymmetric golden code has the lowest decoding complexity compared to previous constructions of space-time codes, regardless of whether the channel varies with time.;Space-time codes that layer or multiplex rate-one space-time codes to achieve arbitrary rates ranging from one to maximal rate have been proposed in literature. Two of the most important constructions are the threaded algebraic and perfect space-time codes. These codes, however, suffer from high decoding complexity and worse bit-error-rate performance when compared to other space-time codes that have been proposed for a particular rate and a particular number of transmit and receive antennas. In this research, we propose the embedded orthogonal space-time codes, which is a family of codes for an arbitrary number of antennas, and for any rate up to half the number of antennas. The family of embedded orthogonal space-time codes is the first general framework for the construction of space-time codes with low-complexity decoding, not only for rate one, but for any rate up to half the number of transmit antennas. Simulation results for up to six transmit antennas show that the embedded orthogonal space-time block codes are simultaneously lower in complexity and lower in error probability when compared to some of the most important constructions of space-time block codes with the same number of antennas and the same rate larger than one.;Having considered the design of space-time block codes with low ML decoding complexity on the transmitter side, we also develop efficient algorithms for ML decoding for the golden code, the asymmetric golden code and the embedded orthogonal space-time block codes on the receiver side. Simulations of the bit-error rate performance and decoding complexity of the asymmetric golden code and embedded orthogonal codes will be used to demonstrate their attractive performance-complexity tradeoff.
机译:长期以来,多径衰落一直被视为无线通信系统中的一种障碍,它限制了通信链路的可靠性和数据速率。通过在发射器和接收器处部署多个天线,可以将多径衰落变成一个优势,与其他方式相比,可以提供更高的可靠性和更高的数据速率。此外,可以在不增加带宽成本的情况下获得速率和可靠性方面的好处,从而使多天线技术成为当前和未来无线系统的基石。通过使用时空编码,可以利用多天线系统的潜在好处。在空时编码中,信息符号跨两个维度编码,空间维度对应于发射机处的多个天线,而时间维度对应于多个信令间隔。在本文中,我们关注线性时空分组码,其中信息符号被线性组合以形成二维码矩阵,其中矩阵的行对应于跨越多个间隔的传输,矩阵的列对应于来自不同天线的传输。;本文中,我们考虑设计具有低最大似然(ML)解码复杂度的空时分组码的问题。我们首先提出一个统一的框架,用于确定空时分组码的最坏情况ML解码复杂度。我们使用这种框架不仅可以确定我们自己构造的最坏情况下的ML解码复杂度,而且还可以显示出一些时空分组码的流行构造具有比以前已知的更低的ML解码复杂度。具体来说,我们证明了利用双输入双输出通道的可靠性和速率优势的黄金代码,其最坏情况下的ML解码复杂度大大低于穷举搜索解码器。鉴于两个发射和两个接收天线系统的实际重要性,我们提出了不对称黄金代码,该代码是专为低ML解码复杂性而设计的。不像某些先前的结构,当信道在代码矩阵的传输周期内变化时,它们的解码复杂度会降低,而非对称黄金码则不管信道可变性如何,都能保持较低的解码复杂度。与先前的时空码结构相比,非对称黄金码具有最低的解码复杂度,而与信道是否随时间变化无关​​;时空码分层或复用速率一的时空码以实现从在文献中已经提出了一种最大速率。最重要的两个结构是螺纹代数和完美的时空代码。然而,与已经针对特定速率和特定数量的发射和接收天线提出的其他空时代码相比,这些代码具有高解码复杂度和较差的误码率性能。在这项研究中,我们提出了嵌入式正交空时码,它是适用于任意数量的天线以及速率不超过天线数量一半的一系列代码。嵌入式正交空时码家族是构造具有低复杂度解码的空时码的第一个通用框架,不仅适用于速率1,而且适用于速率不超过发射天线数量一半的任何速率。多达六个发射天线的仿真结果表明,与一些具有相同数量天线和时空分组码的最重要的时空分组码结构相比,嵌入式正交时空分组码同时具有较低的复杂度和较低的错误概率。相同的速率大于1。;考虑到发射机侧ML解码复杂度较低的空时分组码的设计,我们还开发了用于黄金码,非对称黄金码和嵌入式正交空间的ML解码的高效算法。接收方的时间分组码。非对称黄金码和嵌入式正交码的误码率性能和解码复杂度的仿真将用于证明它们具有吸引力的性能复杂度折衷。

著录项

  • 作者

    Sinnokrot, Mohanned O.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号