首页> 外文学位 >Theoretical modeling of single-phase power electronics loads to predict harmonic distortion at a distribution feeder network using a reverse optimization solution.
【24h】

Theoretical modeling of single-phase power electronics loads to predict harmonic distortion at a distribution feeder network using a reverse optimization solution.

机译:单相电力电子负载的理论建模,可使用逆向优化解决方案预测配电网中的谐波失真。

获取原文
获取原文并翻译 | 示例

摘要

Proliferation of non-linear, single-phase power electronics loads, such as personal computers, television sets, CFLs, has resulted in thousands of individual small harmonic current injectors connected to a distribution feeder network. Harmonic standard: IEC 1000-3-2 classifies such loads as Class D, "low-voltage" equipment with current emissions limited to 16A/Phase. Individual harmonic contributions of such loads appear insignificant; their collective contribution, however, is a matter of concern. The average order of voltage distortion usually varies between 4-6%; current distortion, however, is usually of the order of 100%. Limitations and high-costs associated with conventional harmonic mitigation measures, has furthered the need for regulation and alternative strategies.;The objective of this research is to predict, and mitigate the effects of harmonic proliferation in the main supply current measured at the point of common coupling (PCC). An equivalent circuit model -- an aggregation of single-phase power electronics loads connected to the distribution feeder network is proposed as a part of a forward solution. Each load, individually, behaves as a harmonic current source; the proposed model combines these individual harmonic current injectors into a single harmonic source connected at the PCC and their collective contribution as a single composite harmonic signal. It represents harmonic conditions at the PCC and provides a theoretical measure of harmonic distortion in the supply current.;Such a model finds application during harmonic compliance testing for single-phase power electronics loads; it simulates and predicts the harmonic response of such loads using a theoretical pure 60 Hz sine wave as the supply voltage difficult to obtain physically, yet critical to such tests.;The accuracy of the equivalent circuit model in predicting a harmonic response is pivotal to a successful forward solution. A feed-backwards mechanism is proposed. For a given harmonic supply voltage and circuit configuration of the equivalent circuit model, the feed-backwards method generates the modeled response and compares it to a reference physical response. Finally, it optimizes the circuit configuration to a unique Correction Factor that facilitates an accurate modeled response. Three optimization algorithms, labeled as Response Optimization algorithms have been developed to execute the feed-backwards mechanism. These algorithms are written in FORTRAN-90.
机译:非线性,单相电力电子负载(例如个人计算机,电视机,CFL)的激增,导致成千上万的单个小谐波电流注入器连接到配电馈线网络。谐波标准:IEC 1000-3-2将此类负载分类为D类“低压”设备,其电流发射限制为16A /相。这种负载的单个谐波贡献显得微不足道;然而,它们的集体贡献值得关注。电压畸变的平均阶数通常在4-6%之间;但是,电流失真通常约为100%。与传统的谐波缓解措施相关的局限性和高昂的成本,进一步加剧了对监管和替代策略的需求。这项研究的目的是预测并减轻在常见点测量的主电源电流中谐波扩散的影响耦合(PCC)。作为正向解决方案的一部分,提出了等效电路模型-连接到配电馈线网络的单相电力电子负载的集合。每个负载分别充当谐波电流源。提出的模型将这些单独的谐波电流注入器组合成一个在PCC上连接的单个谐波源,并将它们的共同贡献作为单个复合谐波信号。它代表了PCC的谐波条件,并提供了电源电流中谐波失真的理论量度。这种模型在单相电力电子负载的谐波一致性测试中得到了应用。它使用理论上纯的60 Hz正弦波来仿真和预测此类负载的谐波响应,因为电源电压很难通过物理方式获得,但对此类测试至关重要。;等效电路模型在预测谐波响应方面的准确性对于成功的正向解决方案。提出了一种反馈机制。对于给定的谐波电源电压和等效电路模型的电路配置,反馈方法将生成建模响应并将其与参考物理响应进行比较。最后,它可以将电路配置优化为独特的校正因子,从而有助于准确建模的响应。已经开发出三种标记为“响应优化”算法的优化算法来执行反馈机制。这些算法是用FORTRAN-90编写的。

著录项

  • 作者

    Kapur, Virat.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Electronics and Electrical.;Energy.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号