首页> 外文学位 >Architecture and protocols for a high-performance, secure IEEE 802.11-based wireless mesh network.
【24h】

Architecture and protocols for a high-performance, secure IEEE 802.11-based wireless mesh network.

机译:高性能,基于IEEE 802.11的安全无线网状网络的体系结构和协议。

获取原文
获取原文并翻译 | 示例

摘要

Today's wireless LANs reside only on the last hop between the end users' desktop/laptop machines and the enterprise backbone network. A comprehensive wired backbone still needs to be deployed to inter-connect these access points and the enterprise computing resources. In this project, we architected a novel wireless mesh backbone network architecture (called Hyacinth) that can eliminate most, if not all, of this wiring overhead. In a wireless mesh network (WMN), close-by access points communicate with each other using direct wireless links, while distant access points communicate using multiple wireless hops. In this dissertation, we formulate the capacity, fairness, and security issues with Hyacinth architecture and devise novel solutions to them. Our proposed architecture has three major components: Multi-channel Mesh Networking, Stateful Transport Protocol, and Secure Routing.;Limited capacity remains a pressing issue even for single-hop wireless LANs, let alone a multi-hop WMN where inter-path and intra-path interference limit the number of links that can be simultaneously active in the network. Fortunately, the IEEE 802.11b/g standards and IEEE 802.11a standard provide 3 and 12-25 non-overlapped frequency channels, respectively, which could be used simultaneously within a neighborhood. Hyacinth employs multiple radio channels in each radio neighborhood by equipping each node with multiple network interfaces. To fully utilize the performance potential of this approach, Hyacinth provides two traffic load-aware channel assignment and routing algorithms, both of which tune the network channel assignment and routing based on the network topology and the latest traffic patterns. Even with the use of just 2 radio interfaces per node, the proposed algorithms improve the network cross-section goodput by factors of up to 7 when compared with single-interface single-channel WMNs.;The next key issue with WMNs is lack of an effective transport protocol that can fairly and efficiently allocate the limited network capacity among multiple flows sharing the network. While many transport protocols have been proposed specifically for multi-hop wireless networks, most of them refrain from keeping state in the intermediate network nodes. We study the research question of how much performance improvement is possible if intermediate network nodes could maintain as much state as is needed. In particular, we investigate how a stateful transport protocol can accurately measure the effective physical link capacity, and fairly and efficiently allocate this capacity by estimating the number of sharing flows and their individual sending rates. Additionally, we examine how leveraging the link-layer retransmission mechanism can improve the performance of reliable packet delivery. While the proposed mechanisms improve the fairness and utilization of transport flows on a WMN, they fail to address the hidden node problem that causes one wireless link's transmission to be inhibited by another link, eventually leading to unequal bandwidth allocation between the two. To address this problem, we further propose a global bandwidth allocation algorithm that can provide end-to-end flow-level max-min fairness despite weaknesses in the MAC layer.;The final concern of enterprise users about WLAN technology is its security. In the case of a WMN, the security requirement is even more stringent, because even a single compromised node has the potential of making the entire network unavailable. A compromised node can easily disrupt the network routing state by tampering with control communication or advertising crafted topology/traffic data. We develop a centralized network architecture that incorporates security as a first-class requirement at par with connectivity and performance. The architecture and its associated protocol secure all core operations in a mesh network---topology and traffic statistics collection, route and channel computation, data plane state distribution, network reconfiguration, and also packet forwarding. It can quickly detect most common misbehaviors and trace the problem down to specific nodes. The secure routing mechanisms significantly enhance the availability of a Hyacinth network when some of the WMN nodes are compromised, misconfigured, or broken.
机译:当今的无线局域网仅位于最终用户的台式机/笔记本电脑与企业骨干网之间的最后一跳。仍然需要部署全面的有线骨干网来互连这些接入点和企业计算资源。在这个项目中,我们设计了一种新颖的无线网状骨干网架构(称为Hyacinth),该架构可以消除大部分(如果不是全部)这种布线开销。在无线网状网络(WMN)中,近距离接入点使用直接无线链路相互通信,而远距离接入点使用多个无线跃点进行通信。本文针对风信子体系结构提出了容量,公平性和安全性问题,并提出了新颖的解决方案。我们提出的体系结构具有三个主要组成部分:多通道网状网络,状态传输协议和安全路由;即使对于单跳无线LAN,有限的容量仍然是一个紧迫的问题,更不用说在路径间和内部的多跳WMN了。 -path干扰限制了网络中可以同时激活的链接数。幸运的是,IEEE 802.11b / g标准和IEEE 802.11a标准分别提供3和12-25个不重叠的频道,可以在邻域内同时使用。 Hyacinth通过为每个节点配备多个网络接口在每个无线电邻域中使用多个无线电信道。为了充分利用此方法的性能潜力,Hyacinth提供了两种可感知流量负载的通道分配和路由算法,这两种算法均基于网络拓扑和最新流量模式来调整网络通道分配和路由。即使每个节点仅使用2个无线电接口,与单接口单通道WMN相比,所提出的算法仍可将网络横截面吞吐量提高多达7倍。; WMN的下一个关键问题是缺乏无线网络。可以在共享网络的多个流之间公平有效地分配有限的网络容量的有效传输协议。尽管已经针对多跳无线网络专门提出了许多传输协议,但其中大多数都避免在中间网络节点中保持状态。我们研究以下问题:如果中间网络节点可以维持所需状态,则性能会有多少改善。特别是,我们研究有状态传输协议如何准确地评估有效的物理链路容量,并通过估计共享流的数量及其各自的发送速率来公平有效地分配此容量。此外,我们研究了如何利用链路层重传机制来提高可靠数据包传递的性能。虽然提出的机制提高了WMN上的传输流的公平性和利用率,但它们无法解决隐藏节点问题,该问题导致一个无线链路的传输受到另一链路的抑制,最终导致两者之间的带宽分配不均。为了解决这个问题,我们进一步提出了一种全局带宽分配算法,该算法即使在MAC层存在弱点的情况下仍可以提供端到端流级别的最大-最小公平性。企业用户对WLAN技术的最后关注是它的安全性。在WMN的情况下,安全要求甚至更加严格,因为即使是一个受感染的节点也可能使整个网络不可用。受到破坏的节点可以通过篡改控制通信或广告制作的拓扑/流量数据来轻松破坏网络路由状态。我们开发了一种集中式网络体系结构,该体系结构将安全性作为与连接性和性能同等的一流要求。该架构及其相关协议可确保网状网络中的所有核心操作,包括拓扑和流量统计信息收集,路由和信道计算,数据平面状态分布,网络重新配置以及数据包转发。它可以快速检测到最常见的不良行为,并将问题追溯到特定的节点。当某些WMN节点受到威胁,配置错误或损坏时,安全路由机制会显着提高Hyacinth网络的可用性。

著录项

  • 作者

    Raniwala, Ashish.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号