首页> 外文学位 >A computational biology approach to the analysis of complex physiology: Coagulation, fibrinolysis, and wound healing.
【24h】

A computational biology approach to the analysis of complex physiology: Coagulation, fibrinolysis, and wound healing.

机译:一种用于分析复杂生理学的计算生物学方法:凝血,纤维蛋白溶解和伤口愈合。

获取原文
获取原文并翻译 | 示例

摘要

The birth of complexity research derives from the logical progression of advancement in the scientific field afforded by reductionist theory. We present in silico models of two complex physiological processes, wound healing and coagulation/fibrinolysis based on two common tools in the study of complex physiology: ordinary differential equations (ODE) and Agent Based Modeling (ABM). The strengths of these two approaches are well-suited in the analysis of clinical paradigms such as wound healing and coagulation.;The complex interactions that characterize acute wound healing have stymied the development of effective therapeutic modalities. The use of computational models holds the promise to improve our basic approach to understanding the process. We have modified an existing ordinary differential equation model by (1) evolving from a systemic model to a local model, (2) the incorporation of fibroblast activity, and (3) including the effects of tissue oxygenation. Possible therapeutic targets, such as fibroblast death rate and rate of fibroblast recruitment have been identified by computational analysis. This model is a step toward constructing an integrative systems biology model of human wound healing.;The coagulation and fibrinolytic systems are complex, inter-connected biological systems with major physiological roles. We present an Agent Based Modeling and Simulation (ABMS) approach to these complex interactions. This ABMS method successfully reproduces the initiation, propagation, and termination of blood clot formation and its lysis in vitro due to the activation of either the intrinsic or extrinsic pathways. Furthermore, the ABMS was able to simulate the pharmacological effects of two clinically used anticoagulants, warfarin and heparin, as well as the physiological effects of enzyme deficiency/dysfunction, i.e., hemophilia and antithrombin III-heparin binding impairment, on the coagulation system. The results of the model compare favorably with in vitro experimental data under both physiologic and pathophysiologic conditions.;Our computational systems biology approach integrates reductionist experimental data into a cohesive model that allows rapid evaluation of the effects of multiple variables. Our ODE and AMBS models offer the ability to generate non-linear responses based on known relationships among variables and in silico modeling of mechanistic biological rules on computer software, respectively. Simulations of normal and disease states as well as effects of therapeutic intervention demonstrate the potential uses of computer simulation. Specifically, models may be applied to hypothesis generation and biological advances, discovery of new diagnostic and therapeutic options, platforms to test novel therapies, and opportunities to predict adverse events during drug development. The ultimate aim of such models is creation of bedside simulators that allow personalized, individual medicine; however, a myriad of opportunities for scientific advancement are opened through in silico experimentation.
机译:复杂性研究的诞生源于还原论理论所提供的科学领域的逻辑发展进展。我们基于复杂生理学研究中的两个常用工具,介绍两种复杂生理过程(伤口愈合和凝血/纤维蛋白溶解)的计算机模拟模型:常微分方程(ODE)和基于代理的建模(ABM)。这两种方法的优点非常适合于临床范例如伤口愈合和凝血的分析。表征急性伤口愈合的复杂相互作用阻碍了有效治疗方法的发展。计算模型的使用有望改善我们理解过程的基本方法。我们已经修改了现有的常微分方程模型,方法是:(1)从全身模型演变为局部模型;(2)结合成纤维细胞活性;(3)包括组织氧合作用。通过计算分析已经确定了可能的治疗目标,例如成纤维细胞死亡率和成纤维细胞募集率。该模型是朝着建立人类伤口愈合的综合系统生物学模型迈出的一步。凝血和纤溶系统是复杂的,相互联系的生物学系统,具有重要的生理作用。我们提出了基于代理的建模和仿真(ABMS)方法来处理这些复杂的交互。由于内在或外在途径的激活,该ABMS方法成功地再现了血凝块形成的起始,传播和终止及其在体外的裂解。此外,ABMS能够模拟两种临床使用的抗凝剂华法林和肝素的药理作用,以及酶缺乏/功能障碍(即血友病和抗凝血酶III-肝素结合障碍)对凝血系统的生理作用。该模型的结果与在生理和病理生理条件下的体外实验数据均具有良好的对比。;我们的计算系统生物学方法将还原论者的实验数据整合到一个内聚模型中,从而可以快速评估多个变量的影响。我们的ODE和AMBS模型分别提供了基于变量之间的已知关系和计算机软件上的机械生物学规则的计算机模拟来生成非线性响应的功能。正常和疾病状态的模拟以及治疗干预的效果证明了计算机模拟的潜在用途。具体而言,可以将模型应用于假设的产生和生物学进展,发现新的诊断和治疗选择,测试新疗法的平台以及预测药物开发过程中不良事件的机会。这种模型的最终目的是创建允许个性化个性化药物的床头模拟器。然而,通过计算机模拟实验为科学发展提供了无数的机会。

著录项

  • 作者

    Menke, Nathan.;

  • 作者单位

    Virginia Commonwealth University.;

  • 授予单位 Virginia Commonwealth University.;
  • 学科 Biology Physiology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号