首页> 外文学位 >A study of spatial and time discretizations for discontinuous Galerkin methods.
【24h】

A study of spatial and time discretizations for discontinuous Galerkin methods.

机译:不连续Galerkin方法的空间和时间离散化研究。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation consists of two different research efforts. In the first one, a new approach to the treatment of viscous flux in the context of discontinuous Galerkin spatial discretization is addressed. In the second part of the dissertation, an approach to constructing high-order W-methods is discussed.In the first part of the dissertation, a study of boundary and interface conditions for discontinuous Galerkin approximations of fluid flow equations is undertaken. While the interface flux for the inviscid case is usually computed by approximate Riemann solvers, most discretizations of the Navier-Stokes equations use an average of the viscous fluxes from neighboring elements. A methodology for constructing a set of stable boundary/interface conditions that can be thought of as "viscous" Riemann solvers and are compatible with the inviscid limit is presented.In the second part, we turn our attention to temporal discretizations. Implicit methods are the natural choice for solving stiff systems of ODEs. Rosenbrock methods are a class of linear implicit methods for solving such stiff systems of ODEs. In the Rosenbrock methods the exact Jacobian must be evaluated at every step. These evaluations can make the computations costly. By contrast, W-methods use only occasional calculations of the Jacobian matrix. This makes the W-methods popular among the class of linear implicit methods for numerical solution of stiff ODEs. However the price one has to pay is the large amount of work needed to find the coefficients of the W-methods. As the order of the W-methods increases, the number of order conditions of the W-methods increases very fast. This makes the design of high-order W-methods difficult. In the second part, an approach to constructing high-order W-methods is given.
机译:本文由两个不同的研究工作组成。在第一个中,提出了一种在不连续Galerkin空间离散化背景下处理粘性通量的新方法。在论文的第二部分,讨论了一种构造高阶W方法的方法。在论文的第一部分,研究了非连续流体流动方程的Galerkin逼近的边界和界面条件。尽管无粘情况下的界​​面通量通常由近似的Riemann求解器计算,但Navier-Stokes方程的大多数离散化方法均使用了来自相邻单元的粘性通量的平均值。提出了一种构建一组稳定边界/界面条件的方法,该方法可以被认为是“粘性” Riemann求解器,并且与无粘性极限兼容。在第二部分中,我们将注意力转向时间离散化。隐式方法是解决ODE刚性系统的自然选择。 Rosenbrock方法是用于解决此类刚性ODE系统的线性隐式方法。在Rosenbrock方法中,必须在每一步都评估精确的Jacobian值。这些评估会使计算成本很高。相比之下,W方法仅使用偶发的Jacobian矩阵计算。这使得W方法在用于刚性ODE数值解的线性隐式方法类中很受欢迎。但是,必须付出的代价是找到W方法的系数所需的大量工作。随着W方法的阶数增加,W方法的阶数条件的数量非常快地增加。这使高阶W方法的设计变得困难。在第二部分中,给出了一种构造高阶W方法的方法。

著录项

  • 作者

    Rahunanthan, Arunasalam.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号