首页> 外文学位 >Computer simulation studies of self-assembly of dipolar and quadrupolar colloid particles.
【24h】

Computer simulation studies of self-assembly of dipolar and quadrupolar colloid particles.

机译:偶极和四极胶体粒子自组装的计算机模拟研究。

获取原文
获取原文并翻译 | 示例

摘要

Colloidal particles with directional interactions that self-assemble into pre-defined structures have the potential to serve as the foundation for a new generation of micro- and nano-structures of remarkable complexity and precision. Dipolar colloid particles tend to align end-to-end and self-assemble into variety of micro- and nano-structures ranging from co-crystals of novel symmetry, to open networks (gels) of cross-linked chains of particles. Quadrupolar colloid particles also tend to self-assemble in a wide variety of structural motifs including sheets, tubes and shells depending upon external conditions. We use molecular dynamics computer simulation to explore the self-assembly, structure, crystallization and/or gelation of systems of colloid particles with permanent dipole moments or quadrupole moments immersed in a high-dielectric solvent. Particle-particle interactions are modeled with discontinuous potentials in order to take advantage of discontinuous molecular dynamics (DMD), a fast simulation technique that is very computationally efficient.;We first calculate the phase diagram in the temperature-packing fraction plane of a monodisperse system of dipolar colloid particles using DMD. Several types of phases are found in our simulations: ordered phases including face centered cubic (FCC), hexagonal close packed (HCP) and body centered tetragonal (BCT) at high packing fractions, and fluid, string-fluid and gel phases at low packing fractions. The very low volume fraction gel phases and the well ordered crystal phases are promising for advanced materials applications.;We then extend our analysis to a binary mixture of dipolar colloid particles. Phase diagrams for an equimolar binary mixture of dipolar colloid particles with different diameter ratios and different dipole moment ratios are calculated in the temperature-volume fraction plane. These systems exhibit six distinct phases: isotropic fluid, string-fluid, gel, FCC, HCP, BCT, and ten coexisting phases: Fluida + String-fluidb, Fluida + Gelb, String-fluida + Gelb, Gela + BCTb, FCCa + FCCb, FCCa + HCP b, FCCa + FCCb+ Fluid, HCPa + HCP b, BCTa + BCTb, BCTa + BCTb + large voids, depending upon size ratio and dipole moment ratio. An interesting aspect of these phase diagrams is the appearance of co-crystals containing large and small dipolar colloid particles. Even more interesting is the appearance of two unique bicontinuous gel structures - the first gel consists of two independent but interpenetrating networks of cross-linked chains formed by particles with high dipole moment and chains formed by particles with low dipole moment. The second type of gel consists of a network of cross-linked chains formed by particles with high dipole moment; particles with low dipole moment form a sheath around the chains. Such bicontinuous gels may have unusual rheological and transport properties such as multiple yield stresses and multiple percolation temperatures and could form the basis of a new class of soft-solid materials with unique properties and multiple applications.;We also explore the structure formation of systems of colloid particles with permanent quadrupole moment. We introduce a simple quadrupole-quadrupole discontinuous potential model that gives rise to the self-organization of surface and tubular structures. We find that the discrete rotational symmetry of a quadrupolar particles gives rise to extended two-dimensional sheet or surface structures that preserve the local symmetry within the organized structure. A new type of anisotropic colloid particle is introduced having a displaced quadrupole moment with a unique symmetry; systems comprised of these particles form tubular structures. Our simulations predict optimal conditions for making tubes of specific diameter and length out of quadrupolar colloidal particles; this might eventually be a route to the formation of high quality tubes.
机译:自组装成预定结构的具有方向性相互作用的胶体颗粒有可能成为新一代具有显着复杂性和精密性的微米和纳米结构的基础。偶极胶体粒子倾向于端对端对齐并自组装成各种微结构和纳米结构,范围从新颖对称的共晶体到粒子交联链的开放网络(凝胶)。四极体胶体颗粒还倾向于根据外部条件以各种结构图案自组装,包括片,管和壳。我们使用分子动力学计算机模拟来探索胶体粒子系统的自组装,结构,结晶和/或凝胶化,其中胶体粒子具有永久偶极矩或四极矩浸入高介电溶剂中。为了利用不连续分子动力学(DMD)的优势,使用不连续电势对粒子-粒子之间的相互作用进行建模,这是一种非常高效的计算技术。;我们首先在单分散系统的温度填充分数平面中计算相图DMD制备偶极胶体颗粒在我们的模拟中发现了几种类型的相:有序相,包括高填充率的面心立方(FCC),六方密堆积(HCP)和体心四方相(BCT),以及低填充时的流体,线流体和凝胶相分数。体积分数非常低的凝胶相和有序的结晶相有望用于先进的材料应用。然后,我们将分析扩展到偶极胶体颗粒的二元混合物。在温度-体积分数平面中计算出具有不同直径比和不同偶极矩比的偶极胶体颗粒的等摩尔二元混合物的相图。这些系统表现出六个不同的阶段:各向同性流体,线流体,凝胶,FCC,HCP,BCT和十个共存阶段:Fluida + String-fluidb,Fluida + Gelb,String-fluida + Gelb,Gela + BCTb,FCCa + FCCb ,FCCa + HCP b,FCCa + FCCb +流体,HCPa + HCP b,BCTa + BCTb,BCTa + BCTb +大空隙,具体取决于尺寸比和偶极矩比。这些相图的一个有趣的方面是包含大和小偶极胶体颗粒的共晶体的外观。更有趣的是,出现了两个独特的双连续凝胶结构-第一个凝胶由两个独立但互穿的交联网络组成,该网络由具有高偶极矩的颗粒形成的链和由低偶极矩的颗粒形成的链组成。第二类凝胶由具有高偶极矩的颗粒形成的交联链网络组成。低偶极矩的粒子在链周围形成鞘。这种双连续凝胶可能具有异常的流变和传输特性,例如多个屈服应力和多个渗透温度,并可以构成一类具有独特特性和多种用途的新型软固体材料的基础。具有永久四极矩的胶体颗粒。我们介绍了一个简单的四极-四极间断电位模型,该模型引起了表面和管状结构的自组织。我们发现四极粒子的离散旋转对称性产生了扩展的二维薄片或表面结构,该二维薄片或表面结构保留了组织结构内的局部对称性。引入了一种具有独特对称性的四极矩位移的新型各向异性胶体粒子。由这些颗粒组成的系统形成管状结构。我们的模拟预测了用四极胶体颗粒制造特定直径和长度的管的最佳条件。这最终可能成为形成高质量管的途径。

著录项

  • 作者

    Goyal, Amit.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号