首页> 外文学位 >Development of two-dimensional models to estimate nearshore bathymetry and sediment transport.
【24h】

Development of two-dimensional models to estimate nearshore bathymetry and sediment transport.

机译:开发二维模型以估算近海测深和泥沙输送。

获取原文
获取原文并翻译 | 示例

摘要

We examine the interactions and feedbacks between bathymetry, waves, currents, and sediment transport. Utilizing remotely-sensed wave refraction patterns of nearshore waves, we estimate bathymetry gradients in the nearshore through the 2D irrotationality of the wave number equation. The model, discussed in Chapter 2, uses an augmented form of the refraction equation that relates gradients in bathymetry to gradients in wavenumber and wave angle through the chain rule. The equations are cast in a form that is independent of wave period, so can be solved using wavenumber and direction data from a single snapshot rather than the normally-required time series of images.;Secondly, remotely sensed images of wave breaking over complex bathymetry are used to study the nonlinear feedbacks between two-dimensional (horizontal), 2DH, morphology and cross-shore migration rates of the alongshore averaged bar. We first test a linear model on a subset of 4 years of data at Palm Beach, Australia. The results are discussed in Chapter 3. The model requires eight free parameters, solved for using linear regression of the data to model the relationship between alongshore averaged bar position, x, alongshore sinuosity of the bar, a, and wave forcing, F = H2o. The linear model suggests that 2DH bathymetry is linked to cross-shore bar migration rates. Nevertheless, the primary limitation is that variations in bar position and variability are required to be temporally uncorrelated with forcing in order to achieve meaningful results.;In Chapter 4 a nonlinear model is subsequently developed and tested on the same data set. Initial equations for cross-shore sediment transport are formulated from commonly accepted theory using energetics-type equations. Cross-shore transport is based on the deviations around an equilibrium amount of roller contribution with the nonlinearity of the model forcing sediment transport to zero in the absence of wave breaking. The extension to 2DH is based on parameterizations of bar variability and the associated 2DH circulation. The model has five free parameters used to describe the relation between alongshore averaged bar position, x, 2DH bar variability, a, and wave characteristics (wave height, H, wave period, T, and wave angle, theta. The model is able to span multiple storms, accurately predicting bar migration for both onshore and offshore events. The longest individual data set tested is approximately 6 months. Using manually determined values for the coefficients, bar position is predicted with an R2 value of 0.42 over this time period. The effect of including a 2D dependency both increased rates of onshore migration and prevented highly 2D systems from migrating offshore under moderate wave heights. The model is also compared against a 1DH version by setting the 2D dependency term to unity and using the same values for the five free parameters.;The last project (Chapter 5) explored the utilization of changes in bathymetry, Delta h/Deltat, to gain further understanding of the feedbacks between 2D sediment transport patterns, Qx and Qy, with respect to existing bathymetry in the nearshore. The model is based on the 2D continuity equation that relates changes in bathymetry to gradients in the cross-shore, ∂Q x/∂x, and the alongshore, ∂Qy/∂y, directions. The problem is under-determined, having two unknowns (Qy and Qx) and only one known (Deltah/Deltat) such that a series of constraints must be applied in order to solve for transport. We assume that that the cross-shore integral of Qx is closed, such that no sand enters or exits the system in this direction. By conservation of mass, this requires changes in volume of the cross-shore transect to be due to longshore gradients in Qy. We test six rules for distributing Qy: three rules describing the initial longshore transport ( Qry ) and three describing the cross-shore distribution of the excess volume component ( Qey ). Initial results suggest that requiring sediment to travel down slope ( Qrh=fBy ) is an intuitive choice for describing transport of distinct perturbations. (Abstract shortened by UMI.)
机译:我们研究了测深,波浪,水流和泥沙输送之间的相互作用和反馈。利用近岸波的遥感波折射模式,我们通过波数方程的二维非旋转性估计近岸的测深梯度。在第2章中讨论的模型使用折射方程的增强形式,该折射方程通过链条规则将测深法中的梯度与波数和波角的梯度相关联。该方程以与波浪周期无关的形式进行转换,因此可以使用单个快照的波数和方向数据而不是通常需要的图像时间序列来求解;其次,通过复杂的测深法获得的遥感波分解图像用于研究沿岸平均条形的二维(水平),2DH,形态和跨岸迁移率之间的非线性反馈。我们首先在澳大利亚棕榈滩的4年数据子集中测试线性模型。结果在第3章中进行了讨论。该模型需要八个自由参数,可通过使用数据的线性回归来建模以模拟沿岸平均钢筋位置x,沿岸钢筋的正弦度,a和波浪强迫(F = H2o)之间的关系。 。线性模型表明2DH等深线法与跨岸钢筋迁移速率有关。然而,主要的限制是,为了获得有意义的结果,要求钢筋位置和变异性的变化在时间上与强迫不相关。在第4章中,随后开发了非线性模型并在同一数据集上进行了测试。跨岸沉积物运输的初始方程式是使用能量学类型的方程式从公认的理论得出的。跨岸运输基于平衡滚子贡献量的偏差,该模型具有非线性模型,该模型在没有波浪破碎的情况下将沉积物的运输量强制为零。 2DH的扩展基于条形变异性和相关2DH循环的参数化。该模型有五个自由参数,用于描述沿岸平均钢筋位置,x,2DH钢筋变异性a和波浪特征(波浪高度,H,波浪周期,T和波浪角θ)之间的关系。该模型能够跨越多场风暴,可以准确预测陆上和海上事件的钢筋迁移,测试的最长单个数据集约为6个月,使用手动确定的系数值,可以预测该时间段内钢筋位置的R2值为0.42。包括2D依赖性的影响既增加了陆上迁移速度,又防止了高度2D系统在中等波浪高度下迁移到海外,并且将该模型与1DH版本进行了比较,方法是将2D依赖性项设为1并为5使用相同的值自由参数。;最后一个项目(第5章)探索了测深法变化的利用,即Delta h / Deltat,以进一步了解2D sed之间的反馈相对于近岸现有的测深法而言,水汽运移模式为Qx和Qy。该模型基于2D连续性方程,该方程将水深的变化与跨岸(∂Qx /∂x)和沿岸(∂Qy/∂y)方向的梯度相关联。问题是不确定的,有两个未知数(Qy和Qx),只有一个已知(Deltah / Deltat),因此必须应用一系列约束条件才能解决运输问题。我们假设Qx的跨岸积分是封闭的,因此没有沙子沿该方向进入或离开系统。通过质量守恒,这要求跨岸样带的体积变化是由于Qy中的长岸坡度所致。我们测试了六个用于分配Qy的规则:三个描述了初始长途运输的规则(Qry),还有三个描述了过剩体积分量的跨岸分布(Qey)。初步结果表明,要求沉积物沿坡度下降(Qrh = fBy)是描述不同扰动运移的直观选择。 (摘要由UMI缩短。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号