首页> 外文学位 >Carbon Nanotube Film Based Nanocomposites for Stretchable Energy Storage Devices
【24h】

Carbon Nanotube Film Based Nanocomposites for Stretchable Energy Storage Devices

机译:碳纳米管薄膜基纳米复合材料,用于可伸缩储能装置

获取原文
获取原文并翻译 | 示例

摘要

Stretchable electronics are robust and functional when being mechanically bent, folded, twisted, and even stretched. They are attracting intense attention due to their promising applications in portable electronics and bio-implantable devices with arbitrarily adjustable surfaces. To power them, stretchable energy storage devices are the essential for the fabrication of independent and complete stretchable electronic systems. Material synthesis and structural design are the core of highly stretchable energy storage devices. Utilizing carbon nanotube (CNT) films as stretchable electrodes in supercapacitors has demonstrated excellent functionality and cycling stability. However, the main drawback of such a stretchable electric double-layer supercapacitor suffers from a low specific capacitance and energy density. In this dissertation, research efforts have been focused on three major breakthroughs in CNT film-based stretchable pseudocapacitors, stretchable asymmetric supercapacitors, as well as stretchable lithium-ion batteries, all of them exhibit excellent mechanical property and improved electrochemical performance.;The realization of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid electrodes has been achieved. The stable electrochemical performance of the dynamically stretchable pseudocapacitors under various bending/stretching conditions is attributed to a fast redox reaction at the MnO2/CNT hybrid electrodes, indicated by the extremely small relaxation time constant of less than 0.15 s. To increase the mass loading of the pseudo-capacitive materials in stretchable MnO2/CNT electrodes so as to improve the energy density of the pseudocapacitors, a novel all-solid-state sandwich-like capacitor design has been proposed and constructed, which overcomes the loading limitation of active materials and exhibits excellent structural and electrochemical stabilities. This novel component-level design can also be extended for improving the performance of other stretchable electrochemical systems. Afterward, we devote to developing a high operating voltage stretchable supercapacitor by taking advantage of the asymmetric design with MnO2/CNTs as the positive electrode and Fe2O3/CNTs as the negative electrode. Due to the synergistic effects of the two electrodes with an optimized potential window, the stretchable cell voltage is increased to 2 V, and the energy density is significantly enhanced.;Based on the successes on stretchable supercapacitors, a more challenge task for developing reliable and stretchable lithium-ion battery has been tackled. A bottle neck issue has been resolved by applying a low-temperature hydrothermal synthesis to fabricate the stretchable LiMn2O 4/CNT cathode. Chemical bonding is confirmed between the active materials and CNT scaffolds for the first time, which is the most important characteristic of the stretchable electrodes in a lithium-ion battery system.;With the unique mechanical and electrochemical properties, a variety of new technologies, such as smart textiles, soft robotics, active medical implants, and stretchable consumer electronics will benefit from the CNT film-based stretchable energy storage devices.
机译:当机械弯曲,折叠,扭曲甚至拉伸时,可伸缩电子设备既坚固又功能强大。由于它们在具有任意可调表面的便携式电子产品和可植入生物的设备中的应用前景广阔,因此受到了广泛的关注。为了给它们供电,可伸缩的能量存储设备对于制造独立且完整的可伸缩电子系统至关重要。材料合成和结构设计是高度可伸缩的储能设备的核心。在超级电容器中使用碳纳米管(CNT)膜作为可拉伸电极已证明具有出色的功能性和循环稳定性。然而,这种可拉伸的双电层超级电容器的主要缺点在于比电容和能量密度低。本论文的研究工作集中在基于CNT薄膜的可拉伸假电容器,可拉伸不对称超级电容器以及可拉伸锂离子电池的三个主要突破上,它们均具有优异的机械性能和改善的电化学性能。已经实现了使用弯曲的MnO2 / CNT混合电极的可动态拉伸的伪电容器。动态拉伸假电容器在各种弯曲/拉伸条件下的稳定电化学性能归因于MnO2 / CNT杂化电极上的快速氧化还原反应,这是由小于0.15 s的极小的弛豫时间常数表示的。为了增加可拉伸MnO2 / CNT电极中假电容材料的质量负载,以提高假电容的能量密度,提出并构造了一种新颖的全固态三明治状电容器设计,克服了这种负载问题。活性材料的局限性,并表现出优异的结构和电化学稳定性。这种新颖的组件级设计也可以扩展,以改善其他可拉伸电化学系统的性能。此后,我们致力于通过以MnO2 / CNTs为正电极和Fe2O3 / CNTs为负电极的不对称设计来开发高工作电压可拉伸超级电容器。由于两个电极具有优化的电势窗口的协同效应,可拉伸电池电压增加到2 V,并且能量密度显着提高。;基于可拉伸超级电容器的成功经验,开发可靠和稳定的超级电容器面临的挑战更大可拉伸锂离子电池已得到解决。通过应用低温水热合成来制备可拉伸的LiMn2O 4 / CNT阴极,已经解决了瓶颈问题。首次确认了活性材料与CNT支架之间的化学键合,这是锂离子电池系统中可拉伸电极的最重要特性。凭借独特的机械和电化学性能,各种新技术,例如随着智能纺织品,软机器人,有源医疗植入物和可拉伸消费电子产品将受益于基于CNT薄膜的可拉伸能量存储设备。

著录项

  • 作者

    Gu, Taoli.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Mechanical engineering.;Energy.;Materials science.
  • 学位 D.Eng.
  • 年度 2017
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号