首页> 外文学位 >Micromechanics Based Failure Analysis of Heterogeneous Materials
【24h】

Micromechanics Based Failure Analysis of Heterogeneous Materials

机译:基于微力学的异质材料失效分析

获取原文
获取原文并翻译 | 示例

摘要

In recent decades, heterogeneous materials are extensively used in various industries such as aerospace, defense, automotive and others due to their desirable specific properties and excellent capability of accumulating damage. Despite their wide use, there are numerous challenges associated with the application of these materials. One of the main challenges is lack of accurate tools to predict the initiation, progression and final failure of these materials under various thermomechanical loading conditions. Although failure is usually treated at the macro and meso-scale level, the initiation and growth of failure is a complex phenomena across multiple scales.;The objective of this work is to enable the mechanics of structure genome (MSG) and its companion code SwiftComp to analyze the initial failure (also called static failure), progressive failure, and fatigue failure of heterogeneous materials using micromechanics approach. The initial failure is evaluated at each numerical integration point using pointwise and nonlocal approach for each constituent of the heterogeneous materials. The effects of imperfect interfaces among constituents of heterogeneous materials are also investigated using a linear traction-displacement model. Moreover, the progressive and fatigue damage analyses are conducted using continuum damage mechanics (CDM) approach. The various failure criteria are also applied at a material point to analyze progressive damage in each constituent. The constitutive equation of a damaged material is formulated based on a consistent irreversible thermodynamics approach. The overall tangent modulus of uncoupled elastoplastic damage for negligible back stress effect is derived. The initiation of plasticity and damage in each constituent is evaluated at each numerical integration point using a nonlocal approach. The accumulated plastic strain and anisotropic damage evolution variables are iteratively solved using an incremental algorithm. The damage analyses are performed for both brittle failure/high cycle fatigue (HCF) for negligible plastic strain and ductile failure/low cycle fatigue (LCF) for large plastic strain.;The proposed approach is incorporated in SwiftComp and used to predict the initial failure envelope, stress-strain curve for various loading conditions, and fatigue life of heterogeneous materials. The combined effects of strain hardening and progressive fatigue damage on the effective properties of heterogeneous materials are also studied. The capability of the current approach is validated using several representative examples of heterogeneous materials including binary composites, continuous fiber-reinforced composites, particle-reinforced composites, discontinuous fiber-reinforced composites, and woven composites. The predictions of MSG are also compared with the predictions obtained using various micromechanics approaches such as Generalized Methods of Cells (GMC), Mori-Tanaka (MT), and Double Inclusions (DI) and Representative Volume Element (RVE) Analysis (called as 3-dimensional finite element analysis (3D FEA) in this document).;This study demonstrates that a micromechanics based failure analysis has a great potential to rigorously and more accurately analyze initiation and progression of damage in heterogeneous materials. However, this approach requires material properties specific to damage analysis, which are needed to be independently calibrated for each constituent.
机译:在最近的几十年中,由于异质材料具有理想的特殊性能和出色的累积损伤能力,因此它们广泛用于航空航天,国防,汽车等行业。尽管它们被广泛使用,但是与这些材料的应用相关的许多挑战。主要挑战之一是缺乏精确的工具来预测这些材料在各种热机械载荷条件下的起爆,进展和最终破坏。尽管通常在宏观和中观层面上处理故障,但是故障的发生和发展是跨多个尺度的复杂现象。;这项工作的目的是使结构基因组(MSG)及其配套代码SwiftComp的机制成为可能。使用微力学方法分析异质材料的初始失效(也称为静态失效),渐进失效和疲劳失效。对于异质材料的每个组成部分,使用逐点和非局部方法在每个数值积分点评估初始破坏。还使用线性牵引位移模型研究了异质材料成分之间界面不完善的影响。此外,使用连续损伤力学(CDM)方法进行渐进损伤和疲劳损伤分析。各种失效准则也被应用到一个实质性的点上,以分析每个组成部分中的渐进式损伤。基于一致的不可逆热力学方法,可以计算出受损材料的本构方程。得出了可忽略的背应力效应的未耦合弹塑性损伤的整体切线模量。使用非局部方法在每个数值积分点评估每个成分的可塑性和破坏的开始。使用增量算法迭代求解累积的塑性应变和各向异性破坏演化变量。对塑性变形可忽略的脆性破坏/高周疲劳(HCF)和大塑性应变的延性破坏/低周疲劳(LCF)进行了损伤分析;该方法被纳入SwiftComp中并用于预测初始破坏包络线,各种载荷条件下的应力-应变曲线以及非均质材料的疲劳寿命。还研究了应变硬化和渐进性疲劳损伤对异质材料有效性能的综合影响。使用几种异质材料的代表性示例验证了当前方法的能力,这些示例包括二元复合材料,连续纤维增强的复合材料,颗粒增强的复合材料,不连续的纤维增强的复合材料和机织复合材料。 MSG的预测还与使用各种微力学方法获得的预测进行了比较,例如细胞通用方法(GMC),森田中(MT),双重夹杂物(DI)和代表体积元素(RVE)分析(称为3)本文档中的三维有限元分析(3D FEA)。;该研究表明,基于微力学的失效分析在严格且更准确地分析异质材料中损伤的发生和发展方面具有巨大的潜力。但是,这种方法需要特定于损伤分析的材料属性,需要针对每种成分进行独立校准。

著录项

  • 作者

    Sertse, Hamsasew M.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Aerospace engineering.;Mechanical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号