首页> 外文学位 >Modeling of Heat Transfer and Flow Patterns in a Porous Wick of a Mechanically Pumped Loop Heat Pipe: Parametric Study Using ANSYS Fluent
【24h】

Modeling of Heat Transfer and Flow Patterns in a Porous Wick of a Mechanically Pumped Loop Heat Pipe: Parametric Study Using ANSYS Fluent

机译:机械泵送循环热管多孔芯中传热和流动模式的建模:使用ANSYS Fluent的参数研究

获取原文
获取原文并翻译 | 示例

摘要

In recent years, NASA space exploration has achieved new feats due to advancement in aerodynamics, propulsion, and other related technologies. Future missions, including but not limited to manned mission to Mars, deep space exploratory missions, and orbit transfer vehicles, require advanced thermal management system. Current state-of-the-art for spacecrafts is a mechanically pumped single phase cooling loop that are not enough to meet thermal-related challenges for future space missions. Loop heat pipes (LHP) are the solution for the required thermal management system that is compact, light-weight, reliable, precise, and energy efficient. These are two-phase systems that employ capillary forces instead of pumps to circulate the coolant. In these devices, the coolant evaporates and condenses in the evaporator and condenser, respectively. The condensed coolant liquid is driven toward the evaporator by capillary action in a wick structure located inside the evaporator. A mechanical pump is added to the liquid line of the loop to reach the distributed heat loads while controlling the temperature to produce an isothermal surface. In this work, flow patterns and heat transfer in the LHP evaporator wick is studied for various flow rates of the working fluid, wick thermal conductivity, porosity and permeability of wick, heat flux, and gravity condition. A CFD model has been developed to predict the performance of LHP due to the change in these parameters. The Volume of Fluid (VOF) model in ANSYS Fluent was modified using a User Defined Function (UDF) to calculate mass transfer between the liquid and vapor phases at the interface. The Lee phase change model was used to calculate the mass flux due to evaporation and condensation.
机译:近年来,由于空气动力学,推进技术和其他相关技术的进步,NASA太空探索取得了新的成就。未来的任务,包括但不限于载人火星任务,深空探索任务和轨道转移飞行器,都需要先进的热管理系统。当前航天器的最新技术是机械泵送单相冷却回路,不足以应对未来太空任务的热相关挑战。环路热管(LHP)是紧凑,轻便,可靠,精确和节能的所需热管理系统的解决方案。这些是两相系统,利用毛细作用力而不是泵来循环冷却剂。在这些装置中,冷却剂分别在蒸发器和冷凝器中蒸发和冷凝。冷凝的冷却液通过毛细管作用在位于蒸发器内部的毛细结构中被驱动朝向蒸发器。将机械泵添加到回路的液体管线中,以达到分布的热负荷,同时控制温度以产生等温表面。在这项工作中,研究了LHP蒸发器芯中的流型和传热,以了解工作流体的各种流速,芯的导热率,芯的孔隙率和渗透率,热通量和重力条件。已经开发了CFD模型来预测由于这些参数的变化而导致的LHP性能。使用用户定义函数(UDF)修改了ANSYS Fluent中的流体体积(VOF)模型,以计算界面处液相和气相之间的质量传递。 Lee相变模型用于计算由于蒸发和冷凝引起的质量通量。

著录项

  • 作者

    Ali, Md. Shujan.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2017
  • 页码 54 p.
  • 总页数 54
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号