首页> 外文学位 >Bimetallic Centers with Open Coordination Sites and Magnetic Nanocomposites for Water Remediation
【24h】

Bimetallic Centers with Open Coordination Sites and Magnetic Nanocomposites for Water Remediation

机译:具有开放式配位位点和磁性纳米复合材料的双金属中心用于水修复

获取原文
获取原文并翻译 | 示例

摘要

The development of effective, renewable and environmentally friendly energy sources is essential to supply the growing global energy demands. The use of fossil fuels to fulfill those energy demands have led to the increase of greenhouse gases and water contamination. The extraction of oil and gas requires a large amount of pressurized water, resulting in contaminated water as a byproduct. Meanwhile, ensuring access to clean water is one of the greatest global challenges of this century.;The following study is presented in three sections. In the first section, a bimetallic system with open coordination sites that can be used as a platform for the activation of small molecules has been synthesized. Small molecule activation is important to synthesize more energy dense compounds that can later serve as chemical fuels. A quadruply bonded complex W2(DippF) 2K2 with a W2(0) core was synthesized and structurally characterized. The observed W-W distance of 2.407(1) A, which is longer than previously reported quadruply bonded complexes. DFT calculations were used to elucidate the electronic structure of the unprecedented complex having a D2h symmetry, resulting in a molecular orbital configuration of sigma2pi2pi2delta 2delta2delta2*2 where the HOMO is the delta*.;To prepare future generations for the development of new energy sources, we have designed a four-hour physical chemistry laboratory to introduce upper division students to electrochemistry concepts, including mixed-valency and electron-transfer (ET), using cyclic and differential pulse voltammetries. In this laboratory practice, students use a ferrocene dimer consisting of two ferrocene centers covalently bonded through a dimethylethylene bridge as a platform for the measurement of inner-sphere ET. The degree of electronic communication between the ferrocene redox centers is measured by the magnitude of the equilibrium constant of the comproportionation reaction that yields the mixed valent ferrocene dimer. Students measure the difference in E 1/2 from the electrochemistry of the ferrocene dimers and categorize these ferrocene dimers according to the Robin-Day classification.;The use of fossil fuels have left a negative environmental impact in sources of fresh water. Water contamination is the result of the use of fracking techniques to extract oil and gas. In an attempt to approach this issue a series of highly efficient water contaminant adsorbents were developed using Ni3(BTC)2 and Co3(BTC)2 metal-organic frameworks (MOFs) and Fe3O4 magnetic nanoparticles (MNPs) to functionalize graphene oxide (GO). XRD results show high crystallinity of the prepared nanomaterials and the successful decoration of Ni3(BTC) 2 and Co3(BTC)2 MOFs over the GO substrate (BTC = benzene-1,3,5- tricarboxylic acid). SEM and TEM imaging show the successful formation of nanoscale MOFs and Fe3O4 MNPs over GO. IR spectroscopy supports the characterization and successful preparation of the Fe3O4/MOF GO hybrid nanocomposites. The prepared adsorbents were used to sorb methylene blue (MB) as a model for common organic pollutants in water and common ions from a brackish water model (Na +, Ca2+, Mg2+, SO4 --2, SiO3--2). The adsorption capacity for methylene blue of the prepared nanocomposites is improved by an average of 30.52 and 13.75 mg/g for the Co and Ni composite, respectively, when compared to the MOFs parent materials. The adsorption capacity for sulfates improves by 92.1 mg/g for the Co composite and 112.1 mg/g for the Ni composite, when compared to graphene oxide. This adsorption capacity enhancement is attributed to suppressed aggregation through increased dispersive forces in the MOFs due to the presence of GO, formation of nanoscale MOFs over the GO platform, and the hindering of stacking of the graphene layers by the MOFs. Leaching tests show that the release of Co and Ni ions to water is reduced from 105.2 and 220 ppm, respectively, in the parent MOF materials to 0.5 and 16.4 ppm, respectively, in the nanocomposites. These findings show that the newly developed adsorbents can sorb organic pollutants, and target sulfate and silicate anions, which makes them suitable candidates for water and wastewater treatments.
机译:开发有效,可再生和环保的能源对满足日益增长的全球能源需求至关重要。使用化石燃料满足这些能源需求已导致温室气体和水污染增加。提取石油和天然气需要大量的加压水,导致副产物被污染。同时,确保获得清洁水是本世纪全球最大的挑战之一。以下三部分介绍了以下研究。在第一部分中,已经合成了具有开放配位点的双金属系统,该系统可以用作激活小分子的平台。小分子活化对于合成更多能量密集的化合物非常重要,这些化合物以后可以用作化学燃料。合成了具有W2(0)核的四重键合复合物W2(DippF)2K2,并对其结构进行了表征。观察到的W-W距离为2.407(1)A,比以前报道的四重键合配合物更长。 DFT计算用于阐明具有D2h对称性的空前复合物的电子结构,从而形成了sigma2pi2pi2delta 2delta2delta2 * 2的分子轨道构型,其中HOMO是delta *。我们设计了一个四小时的物理化学实验室,向高年级学生介绍使用循环伏安法和差分脉冲伏安法的电化学概念,包括混合价和电子转移(ET)。在该实验室实践中,学生使用由两个通过二甲基乙烯桥共价键合的二茂铁中心组成的二茂铁二聚体作为测量内球ET的平台。二茂铁氧化还原中心之间的电子连通程度通过产生混合的二价二茂铁二聚体的共歧化反应的平衡常数的大小来测量。学生们根据二茂铁二聚体的电化学测量E 1/2的差异,并根据Robin-Robin Day分类对这些二茂铁二聚体进行分类。;化石燃料的使用对淡水源产生了负面的环境影响。水污染是使用压裂技术提取石油和天然气的结果。为了解决这个问题,使用Ni3(BTC)2和Co3(BTC)2金属有机骨架(MOF)和Fe3O4磁性纳米粒子(MNP)开发了一系列高效水污染物吸附剂,以功能化氧化石墨烯(GO) 。 XRD结果表明,所制备的纳米材料具有很高的结晶度,并且在GO基板(BTC =苯-1,3,5-三羧酸)上成功修饰了Ni3(BTC)2和Co3(BTC)2 MOF。 SEM和TEM成像表明,GO上成功形成了纳米MOF和Fe3O4 MNP。红外光谱支持Fe3O4 / MOF GO杂化纳米复合材料的表征和成功制备。所制备的吸附剂用于吸附亚甲基蓝(MB),作为咸水模型(Na +,Ca2 +,Mg2 +,SO4 --2,SiO3--2)中水中常见有机污染物和常见离子的模型。与MOFs母体材料相比,制备的纳米复合材料对钴和镍复合材料的亚甲基蓝的吸附能力分别平均提高了30.52和13.75 mg / g。与氧化石墨烯相比,钴复合材料对硫酸盐的吸附能力提高了92.1 mg / g,镍复合材料对硫酸盐的吸附能力提高了112.1 mg / g。这种吸附能力的提高归因于由于GO的存在而导致的MOF中分散力的增加,抑制了聚集,GO平台上形成了纳米级MOF,以及MOF阻碍了石墨烯层的堆积。浸出试验表明,Co和Ni离子向水中的释放分别从母体MOF材料中的105.2和220 ppm降低到纳米复合材料中的0.5和16.4 ppm。这些发现表明,新开发的吸附剂可以吸附有机污染物,并以硫酸根和硅酸根阴离子为目标,这使其成为水和废水处理的合适选择。

著录项

  • 作者

    Ventura, Karen.;

  • 作者单位

    The University of Texas at El Paso.;

  • 授予单位 The University of Texas at El Paso.;
  • 学科 Chemistry.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 语言学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号