首页> 外文学位 >Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows
【24h】

Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows

机译:两相流的谱级联输运湍流模型开发

获取原文
获取原文并翻译 | 示例

摘要

Turbulence modeling remains a challenging problem in nuclear reactor applications, particularly for the turbulent multiphase flow conditions in nuclear reactor subchannels. Understanding the fundamental physics of turbulent multiphase flows is crucial for the improvement and further development of multiphase flow models used in reactor operation and safety calculations. Reactor calculations with Reynolds-averaged Navier-Stokes (RANS) approach continue to become viable tools for reactor analysis. The on-going increase in available computational resources allows for turbulence models that are more complex than the traditional two-equation models to become practical choices for nuclear reactor computational fluid dynamic (CFD) and multiphase computational fluid dynamic (M-CFD) simulations. Similarly, increased computational capabilities continue to allow for higher Reynolds numbers and more complex geometries to be evaluated using direct numerical simulation (DNS), thus providing more validation and verification data for turbulence model development. Spectral turbulence models are a promising approach to M-CFD simulations. These models resolve mean flow parameters as well as the turbulent kinetic energy spectrum, reproducing more physical details of the turbulence than traditional two-equation type models. Previously, work performed by other researchers on a spectral cascade-transport model has shown that the model behaves well for single and bubbly twophase decay of isotropic turbulence, single and two-phase uniform shear flow, and single-phase flow in a channel without resolving the near-wall boundary layer for relatively low Reynolds number. Spectral models are great candidates for multiphase RANS modeling since bubble source terms can be modeled as contributions to specific turbulence scales.;This work focuses on the improvement and further development of the spectral cascadetransport model (SCTM) to become a three-dimensional (3D) turbulence model for use in M-CFD codes. To aid in SCTM development and validation a spectral analysis of single and two-phase bubbly DNS data in different geometries was performed with investigation of the modulation of the turbulent kinetic energy spectrum slope due to the presence of bubbles. A new spectral analysis technique was developed to show that modifications to the energy spectrum slope are due to the presence of bubble wakes. Spectral analysis results are essential aids in turbulence model development and validation. Further work on the one-dimensional (1D) SCTM formulation was performed to improve model behavior for higher Reynolds number channel flow than previously examined, where the boundary layer close to the solid wall is now resolved and good agreement was achieved between the SCTM and DNS data. The SCTM was then implemented into the 3D MCFD package NPHASE-CMFD and tested for turbulent single-phase, monodispersed bubbly twophase, and polydispersed bubbly two-phase flow in various geometries. The SCTM predictions were compared with the k-a model, experimental data, and DNS data. The objective of the work is to improve and develop the SCTM and subsequently provide the numerical framework for the SCTM to be used in M-CFD predictions of multiphase flow in complex nuclear reactor geometries.
机译:在核反应堆应用中,湍流建模仍然是一个具有挑战性的问题,特别是对于核反应堆子通道中的湍流多相流动条件而言。理解湍流多相流的基本物理原理对于改进和进一步发展用于反应堆运行和安全计算的多相流模型至关重要。使用雷诺平均Navier-Stokes(RANS)方法进行反应堆计算继续成为进行反应堆分析的可行工具。可用计算资源的不断增加使湍流模型比传统的两方程模型更复杂,从而成为核反应堆计算流体动力学(CFD)和多相计算流体动力学(M-CFD)模拟的实际选择。同样,增加的计算能力继续允许使用直接数值模拟(DNS)评估更高的雷诺数和更复杂的几何形状,从而为湍流模型开发提供更多的验证和验证数据。频谱湍流模型是进行M-CFD仿真的有前途的方法。这些模型解析平均流量参数以及湍动能谱,比传统的两方程式模型重现了更多的湍流物理细节。以前,其他研究人员在频谱级联传输模型上所做的工作表明,该模型对于各向同性湍流的单相和气泡两相衰减,单相和两相均匀切变流以及通道中的单相流(没有解析)表现良好雷诺数相对较低的近壁边界层。光谱模型是多相RANS建模的理想候选者,因为可以将气泡源项建模为对特定湍流尺度的贡献。;这项工作着眼于改进和进一步发展光谱级联传输模型(SCTM)使其成为三维(3D) M-CFD代码中使用的湍流模型。为了协助SCTM开发和验证,对不同几何形状的单相和两相气泡DNS数据进行了频谱分析,并研究了由于气泡的存在而引起的湍动能谱斜率的调制。开发了一种新的光谱分析技术,表明对能谱斜率的修改归因于气泡尾流的存在。光谱分析结果对湍流模型的开发和验证至关重要。对一维(1D)SCTM公式进行了进一步的工作,以改善模型行为,从而获得比以前检查的更高的雷诺数通道流量,此时已解决了靠近固体壁的边界层,并且在SCTM和DNS之间达成了良好的协议数据。然后将SCTM实施到3D MCFD软件包NPHASE-CMFD中,并针对各种几何形状的湍流单相,单分散气泡状两相和多分散气泡状两相流进行了测试。将SCTM预测与k-a模型,实验数据和DNS数据进行了比较。这项工作的目的是改进和发展SCTM,并随后为SCTM提供数值框架,以用于复杂核反应堆几何结构中多相流的M-CFD预测。

著录项

  • 作者

    Brown, Cameron Scott.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Nuclear engineering.;Mechanical engineering.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号