首页> 外文学位 >Ferromagnetic Josephson Junctions Carrying Spin-Triplet Supercurrent for Cryogenic Memory
【24h】

Ferromagnetic Josephson Junctions Carrying Spin-Triplet Supercurrent for Cryogenic Memory

机译:铁磁约瑟夫逊结携带自旋三重超电流用于低温记忆

获取原文
获取原文并翻译 | 示例

摘要

In this thesis we present the first experimental demonstration of phase-controllable Josephson junctions that carry long range spin-triplet supercurrent. These junctions exhibit ground-state phase shifts of either 0 or pi and are of considerable interest for the development of random access memory for energy efficient superconducting computers.;We demonstrate a scheme by which spin-triplet supercurrent in the junctions is generated through the ferromagnetic proximity effect using three magnetic layers with noncolinear magnetizations. The central layer is a synthetic antiferromagnet with magnetization perpendicular to the plane, while the other two ferromagnetic layers have in-plane magnetization. First, we establish that the supercurrent in these junctions is spin-triplet in nature by observing the characteristic slow decay of the critical current versus the central layer thickness when compared to other junctions that do not have the in-plane layers and carry only spin-singlet supercurrent. The phase state of the junctions is revealed by measuring the interference between two such Josephson junctions in a Superconducting QUantum Interference Device (SQUID) loop. By switching the magnetization of one of the layers by 180° without disturbing the other two layers, we show that the phase state of the Josephson junctions can be controllably switched between 0 and pi over a thousand times without error, opening possibilities for their use in superconducting memory.;We also show that there are easier ways to make a phase-controllable cryogenic memory device using spin-singlet supercurrent. We discuss how Josephson junctions containing only two magnetic layers of appropriate thickness arranged into a spin-valve configuration exhibit controllable 0--pi switching, first demonstrated by the Birge group at Michigan State University in 2016 using a similar SQUID measurement scheme. I describe the main contributions I made as a part of that effort, in particular the development of a general asymmetric SQUID fitting program that provided the unambiguous proof that the devices switched between the 0 and pi phase states.;We also discuss a number of material studies that served as stepping stones toward the development and improvement of both of the previously mentioned phase-controllable memory demonstrations. We use primarily Fraunhofer physics and SQUID magnetometry to characterize the magnetic and superconducting properties of Josephson junctions containing the ferromagnets: Ni, Ni81Fe 19, Ni65Fe15Co20, Pd97Fe 3, and multilayers of Pd/Co. We examine the relative advantages and disadvantages that each of these materials offer to the development of future superconducting memory devices and compare the strengths and weaknesses of the two phase-control memory schemes.
机译:在本文中,我们提出了具有远距离自旋三重态超电流的相控约瑟夫逊结的第一个实验证明。这些结表现出0或pi的基态相移,对于开发高能效超导计算机的随机存取存储器具有重要意义。我们展示了一种通过铁磁在结中产生自旋三重态超电流的方案使用具有非共线磁化强度的三个磁性层的接近效应。中间层是合成反铁磁体,其磁化强度垂直于平面,而其他两个铁磁层则具有面内磁化强度。首先,我们通过观察临界电流相对于中心层厚度的慢速衰减特性(与不具有平面内层且仅携带自旋结构的其他结点相比)来确定这些结点中的超电流本质上是自旋三重态单线态超电流。通过测量超导量子干扰设备(SQUID)回路中两个这样的约瑟夫逊结之间的干扰,可以揭示结的相态。通过将一层中的磁化强度切换180°而不会干扰其他两层,我们表明,约瑟夫森结的相态可以在0到pi之间可控地切换一千次而没有错误,这为将它们用于我们还表明,有更简单的方法可以使用自旋单极超电流制造相位可控的低温存储设备。我们讨论了仅包含两个具有适当厚度的磁性层(排列成自旋阀配置)的约瑟夫逊结如何呈现出可控的0-pi开关,该开关由密歇根州立大学的Birge组于2016年首次使用类似的SQUID测量方案进行了证明。我描述了我作为这项工作的一部分所做的主要贡献,特别是开发了一个通用的非对称SQUID拟合程序,该程序提供了设备在0和pi相状态之间切换的明确证据。;我们还讨论了许多材料。这些研究是发展和改进前述两个相位可控的存储器演示的垫脚石。我们主要使用弗劳恩霍夫物理学和SQUID磁力分析法来表征包含铁磁体:Ni,Ni81Fe 19,Ni65Fe15Co20,Pd97Fe 3和多层Pd / Co的约瑟夫森结的磁性和超导特性。我们研究了每种材料对未来超导存储器件开发的相对优势和劣势,并比较了两种相控存储方案的优缺点。

著录项

  • 作者

    Glick, Joseph Allen, III.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Physics.;Low temperature physics.;Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 251 p.
  • 总页数 251
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号