首页> 外文学位 >Green bio-compoisites from polyhydroxy-butyrate-co-valerate (PHBV), wood fiber and talc.
【24h】

Green bio-compoisites from polyhydroxy-butyrate-co-valerate (PHBV), wood fiber and talc.

机译:绿色生物复合物,来自聚羟基丁酸-共-戊酸酯(PHBV),木纤维和滑石粉。

获取原文
获取原文并翻译 | 示例

摘要

Wood/Natural fiber plastic composites (W/NPCs) have been widely accepted and are an enormously growing segment of the commodity plastics market. These are predominantly being used in decking, household interiors, etc., and more recently have made inroads in automotive interior applications. These are short fiber composites developed by using wood/natural fiber as reinforcement in the plastic matrix. Generally, plastic constitutes from 30 to 70% of the entire product mass of the composite and the most used plastics are conventional petroleum based i.e., polyethylene, polyvinyl chloride, polypropylene and nylon. Polyhydroxyalkanoates (PHAs) are bacterially produced plastics from commonly available biomass, and are projected to be sustainable and viable alternatives to petroleum based plastics. This research focuses on a holistic approach to shift W/NPCs from partially to fully green biocomposites, by replacing the conventional plastic constituent in the W/NPCs with a renewable source based and biodegradable bioplastic i.e., PHAs. This broadly addresses the evolving environmental concerns related to conventional petro-plastics. In this process of transformation from partially to fully green bio-composites, issues coupled to biopolymers based W/NPCs such as, cost, processablity, performance, compatibility of reinforcing agent and matrix, and raw material availability are addressed. These fully green biocomposites can find potential applications in rigid packaging, distribution, household items and automotive interiors.This dissertation advances in four consecutive syllogistic stages: (1) In the first stage, the development of wood fiber reinforced bio-plastic i.e., polyhydroxybutyrate-co-valerate (PHBV) bio-composites is accomplished on the performance evaluation, and comparison to conventional WPCs is addressed. (2) In the second stage, bio-composites from natural fiber, i.e., bamboo fiber, and PHBV, at 30 & 40 wt% fiber content, were fabricated and their analogy to wood fiber reinforced PHBV bio-composites is determined. (3) In the third stage, a comparative study of anisotropy, static and dynamic mechanical evaluation of biocomposites fabricated using two different molding processes, i.e. injection and compression molding, was accomplished. (4) In the final stage, "green hybrid bioplastic composites" containing synergistic reinforcements of talc and wood fiber were designed and fabricated.The biocomposites were extrusion processed followed by injection molding and analyzed for static and dynamic mechanical, thermal & morphological aspects. The tensile and flexural modulus of the bio-composites with 40 wt% of the wood fiber was enhanced by ~167%, and the heat deflection temperature by 21%. Statistically, there was no effect of the fiber type (i.e., bamboo and wood fiber) on the mechanical properties, except for notch impact strength and heat deflection temperature. The squeeze flow test revealed the anisotropy in the injection molded short fiber bio-composites. Synergetic reinforcement of the talc platelets and cylindrical wood fibers increased Young's and flexural modulus, by ~200%, at 20 wt% of each in PHBV. The high surface energy of talc platelets allows good talc-PHBV interfacial interactions as shown by the morphological study and no additional crystallization of PHBV was observed.
机译:木材/天然纤维塑料复合材料(W / NPC)已被广泛接受,并且是商品塑料市场的一个巨大增长部分。这些主要用于甲板,家庭室内等,并且最近已在汽车室内应用中取得了进展。这些是通过使用木材/天然纤维作为塑料基质中的增强材料而开发的短纤维复合材料。通常,塑料占复合材料总产品质量的30%至70%,最常用的塑料是常规的石油基,即聚乙烯,聚氯乙烯,聚丙烯和尼龙。聚羟基链烷酸酯(PHA)是由细菌从常用的生物质中生产的塑料,并且预计将是石油基塑料的可持续且可行的替代品。这项研究着重于通过将W / NPC中的常规塑料成分替换为基于可再生资源和可生物降解的生物塑料(即PHA)的整体方法,将W / NPC从部分绿色转变为完全绿色的生物复合材料。这广泛地解决了与常规石油塑料有关的环境问题。在从部分绿色转变为完全绿色的生物复合材料的过程中,解决了与基于生物聚合物的W / NPC相关的问题,例如成本,可加工性,性能,增强剂与基质的相容性以及原材料的可用性。这些完全绿色的生物复合材料可在硬包装,分销,家居用品和汽车内饰中找到潜在的应用。本论文在四个连续的三段论阶段中取得了进展:(1)在第一阶段,木纤维增强生物塑料即聚羟基丁酸酯的开发戊酸(PHBV)生物复合材料是在性能评估中完成的,并提出了与常规WPC的比较。 (2)在第二阶段中,由天然纤维即竹纤维和PHBV制成的生物复合物,纤维含量为30wt%和40wt%,并确定它们与木纤维增强的PHBV生物复合物的相似性。 (3)在第三阶段,完成了对使用两种不同成型工艺(即注射成型和压缩成型)制造的生物复合材料的各向异性,静态和动态力学评估的比较研究。 (4)在最后阶段,设计并制造了含有滑石粉和木纤维协同增强剂的“绿色杂化生物塑料复合材料”。对生物复合材料进行挤压加工,然后注塑成型,分析其静态和动态力学,热学和形态学方面。 40%(重量)木纤维的生物复合材料的拉伸和弯曲模量提高了约167%,热变形温度提高了21%。统计学上,除了缺口冲击强度和热变形温度之外,纤维类型(即竹纤维和木纤维)对机械性能没有影响。挤压流动试验揭示了注塑短纤维生物复合材料的各向异性。在PHBV中,滑石片和圆柱状木纤维的协同增强使杨氏和弯曲模量增加了约200%,约为200%。如形态学研究所示,滑石片血小板的高表面能允许良好的滑石-PHBV界面相互作用,并且未观察到PHBV的其他结晶。

著录项

  • 作者

    Singh, Sanjeev.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Chemistry Polymer.Plastics Technology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号