首页> 外文学位 >Process Analysis of Manufacturing Composites Structures with Vacuum-Bag-Only Prepregs: Quantifying Partial Resin Impregnation and Its Effect on Gas Evacuation
【24h】

Process Analysis of Manufacturing Composites Structures with Vacuum-Bag-Only Prepregs: Quantifying Partial Resin Impregnation and Its Effect on Gas Evacuation

机译:仅使用真空袋预浸料制造复合材料结构的过程分析:定量部分树脂浸渍及其对抽气的影响

获取原文
获取原文并翻译 | 示例

摘要

Vacuum bag-only processes, used in the manufacture of composite structures (fiber reinforced polymer), are inexpensive alternatives to similar high pressure processes which can reliably produce highly consolidated---high fiber volume fraction, low void content---composite laminates. Prepregs---fiber plies, pre-impregnated with resin (thermoset or thermoplastic)---are processed with elevated temperature and pressure (applied normal to the laminate), which consolidates and cures the prepregs to form the composite structure. Research within the last decade has proven that low void content composite laminates can be produced using prepregs with a vacuum bag only process (in ambient atmosphere) if the prepregs are only partially impregnated with resin.;Open porosity (non-impregnated cross-sections) of the fiber architecture, serves as air evacuation pathways, which allows vacuum pressure applied at the boundaries of the laminated structure to evacuate any gases before becoming entrapped in the resin. The nature of resin distribution (and redistribution), evolution of open porosity, and it's effect on gas evacuation---which intrinsically defines the material properties pertaining to processing and process outcome---is poorly understood. This dissertation pursues a framework and methodology to characterize the relationship between resin saturation and macroscopic gas evacuation properties (permeability, porosity, and Klinkenberg effects), as well as the near-microscopic flow of resin during consolidation.;This dissertation introduces an in-situ resin visualization method used to (i) model the dual scale resin impregnation as a function of pressure and temperature, (ii) observe and model the movement of bubbles which travel with the resin toward evacuated air pathways,and (iii) quantify the surface saturation, which is used to characterize gas permeability as it changes with resin saturation.;This surface visualization method demonstrates that resin flow observed to strongly follow a dual scale flow pattern. A flow model is introduced to describe the two observed flow stages: inter-fiber tow flow and intra-tow flow. By matching the experimental data with the model, values of permeability are estimated from inter-tow pores and intra-tow pores.;Using the same visualization technique, the focus is changed to track bubbles flowing in the resin. Bubbles are observed to emerge through pinholes and flow with the resin through inter-tow channels. A key finding of this study is that tunable process parameters, such as pressure and temperature, are less important for successful bubble removal as compared to the initial state of resin impregnation in the prepreg. Prepregs with high resin impregnation will not be able to vent bubbles, but with sufficiently low resin impregnation, bubbles may escape into air pathways. Small Capillary number theory (i.e. Ca < 0.01) was shown to under predict the relative velocity of bubbles, suggesting that surface tension does not significantly contribute to the drag force on bubbles.;Gas evacuation from a partially impregnated prepreg, was characterized using the pulse-decay method. Dimensionless analysis was used to show how the initial pressure, boundary conditions (vacuum pressure at x = 0 and with or without a reservoir volume at x = L), and Klinkenberg parameter effect the predicted decay of gas pressure. A universal scaling function was identified, which predicts the decay of gas pressure from an empty reservoir volume, through the porous material. By comparing the experimental data to a set of dimensionless master curves, the intrinsic permeability, Klinkenberg parameter, and porosity were determined.
机译:用于制造复合结构(纤维增强聚合物)的仅使用真空袋的工艺是类似高压工艺的廉价替代品,该工艺可以可靠地生产出高度固结的高纤维含量高孔隙率低复合材料层压板。预浸料-用树脂(热固性或热塑性塑料)预浸渍的纤维层--在升高的温度和压力下(垂直于层压材料)进行处理,固化并固化预浸料以形成复合结构。过去十年的研究证明,如果预浸料仅部分浸渍树脂,则可以使用仅采用真空袋工艺的预浸料生产低孔隙率的复合层压板(在环境中);开孔率(未浸渍的横截面)纤维结构的“结构”用作空气排出通道,其允许在层压结构的边界处施加真空压力,以在被截留在树脂中之前排空任何气体。人们对树脂分布(和再分布)的性质,开孔的演变及其对气体排空的影响(本质上定义了与加工和工艺结果有关的材料特性)的了解很少。本文寻求一个框架和方法来表征树脂饱和度和宏观的抽气特性(渗透率,孔隙率和克林根贝格效应)之间的关系,以及在固结过程中树脂的近微观流动。树脂可视化方法,用于(i)对双倍比例的树脂浸渍进行建模,作为压力和温度的函数;(ii)观察和建模随树脂流向抽空空气通道的气泡的运动;以及(iii)量化表面饱和度,用于表征随树脂饱和度变化的气体渗透率。这种表面可视化方法表明,观察到的树脂流动强烈遵循双尺度流动模式。引入流动模型来描述观察到的两个流动阶段:纤维间丝束流和纤维束内流。通过将实验数据与模型相匹配,可从丝束间孔和丝束内孔估计渗透率值。使用相同的可视化技术,将焦点更改为跟踪树脂中的气泡流动。观察到气泡通过针孔出现,并与树脂通过丝束间通道流动。这项研究的关键发现是,与预浸料中树脂浸渍的初始状态相比,可调节的工艺参数(例如压力和温度)对于成功去除气泡而言并不重要。树脂浸渍量高的预浸料无法排出气泡,但树脂浸渍量低时,气泡可能会逸出到空气通道中。小毛细数理论(即Ca <0.01)被证明不能预测气泡的相对速度,表明表面张力并没有显着影响气泡的阻力。使用脉冲对从部分浸渍的预浸料坯中抽气进行了表征衰减方法。使用无因次分析来显示初始压力,边界条件(x = 0处的真空压力以及x = L处有或没有储层体积)和Klinkenberg参数如何影响预测的气压衰减。确定了通用缩放函数,该函数预测了气体从空的储层中通过多孔材料的衰减。通过将实验数据与一组无量纲主曲线进行比较,确定了固有渗透率,Klinkenberg参数和孔隙率。

著录项

  • 作者

    Cender, Thomas A.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Mechanical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号