首页> 外文学位 >The Refinement of Control Strategies for Cortically-Controlled Functional Electrical Stimulation
【24h】

The Refinement of Control Strategies for Cortically-Controlled Functional Electrical Stimulation

机译:皮质控制功能性电刺激控制策略的细化

获取原文
获取原文并翻译 | 示例

摘要

Paralysis resulting from spinal cord injury (SCI) is devastating, dramatically reducing the independence of affected individuals. Currently, functional electrical stimulation (FES), controlled by a patient's residual movements, is used clinically to restore a limited range of voluntary movement. However, if FES could be controlled using signals recorded from the brain, it might allow patients with high-level SCI to regain even more natural and sophisticated movements. Cortically-controlled FES has been successfully used in animal experiments and in preliminary human clinical trials, but it needs refinement before it can be fully translated to the clinic. Here I present three distinct studies, each of which addresses the improvement of a system control strategy. Taken together, my three studies offer insights that will improve the future implementation of cortically-controlled FES.;In my first study, I evaluated the ability to use peripheral nerve stimulation to selectively activate muscles for FES. I demonstrated that the Flat Interface Nerve Electrode (FINE) can selectively stimulate a subset of wrist and hand muscles, and that this stimulation is stable over a period of 4 months. In future implementations of FES, nerve stimulation can therefore be used to selectively stimulate a subset of muscles without the need to implant these muscles individually. This method may be especially useful for muscles which are difficult to individually implant and stimulate intramuscularly without current spillover.;Cortically-controlled FES also relies on the ability to accurately predict muscle signals (EMG) from neural activity in motor cortex (M1) using a mathematical algorithm, or neural "decoder". In my second and third studies, I address the question of how accurate a decoder needs to be, both for making accurate EMG predictions across behaviors, and for facilitating intuitive user control. No decoder can be expected to be perfect, but I also evaluate the brain's ability to adapt to imperfect decoders, which may ultimately enable the successful restoration of movement. I first examine the accuracy of a single decoder for predicting actual wrist EMG across three highly varied dynamical conditions: isometric forces, unloaded movements, and movements against an elastic load. To allow a decoder to perform well across these tasks, it needs to be trained on data from all three, and furthermore, needs to be nonlinear. Second, I evaluate the ability of monkeys to learn two different kinds of altered decoders: one that preserved the natural coactivation patterns of muscles, and one that didn't. The monkeys are better able to learn to use the former decoder, and never accomplish all task goals in the latter case. Taken together, my results suggest that neural decoders should include robust multi-task training, and should account for nonlinearities in the motor system. They also suggest that imperfect EMG decoders can be learned, as long as they take into account the natural activation patterns of muscles. Overall, the results presented in this dissertation offer insights and tools that will improve the future implementation of cortically-controlled FES.
机译:脊髓损伤(SCI)造成的瘫痪是毁灭性的,大大降低了受影响个体的独立性。当前,由患者的残余运动控制的功能性电刺激(FES)在临床上用于恢复有限范围的自发运动。但是,如果可以使用大脑记录的信号来控制FES,则可能会使SCI较高的患者恢复更为自然和复杂的运动。皮质控制的FES已成功用于动物实验和初步的人类临床试验中,但需要完善后才能完全翻译到临床。在这里,我提出了三个不同的研究,每个研究都针对系统控制策略的改进。综上所述,我的三项研究提供了可改善皮质控制FES的未来实现的见解。在我的第一项研究中,我评估了使用周围神经刺激选择性激活FES肌肉的能力。我证明了扁平界面神经电极(FINE)可以选择性地刺激一部分腕部和手部肌肉,并且这种刺激在4个月的时间内是稳定的。因此,在FES的未来实现中,神经刺激可用于选择性刺激一部分肌肉,而无需分别植入这些肌肉。这种方法对于难以单独植入并难以在没有电流溢出的情况下进行肌肉内刺激的肌肉特别有用。受控FES还依赖于使用运动皮层(M1)的神经活动准确预测肌肉信号(EMG)的能力。数学算法或神经“解码器”。在我的第二和第三项研究中,我解决了解码器需要达到多精确的问题,既要针对行为进行准确的EMG预测,又要促进直观的用户控制。没有哪个解码器可以期望是完美的,但是我还评估了大脑适应不完美解码器的能力,这最终可能使运动得以成功恢复。首先,我考察了单个解码器在三种高度变化的动态条件下预测实际手腕肌电图的准确性:等轴测力,空载运动和抵抗弹性载荷的运动。为了使解码器能够很好地完成这些任务,需要对这三个方面的数据进行训练,而且还需要是非线性的。其次,我评估了猴子学习两种不同类型的解码器的能力:一种保留了肌肉的自然共激活模式,而另一种则没有。猴子能够更好地学习使用前一种解码器,而在后一种情况下永远无法完成所有任务目标。两者合计,我的结果表明神经解码器应包括强大的多任务训练,并应考虑到电机系统中的非线性。他们还建议,只要考虑到肌肉的自然激活模式,就可以学习不完美的EMG解码器。总体而言,本文提出的结果提供了见识和工具,将改善皮质控制FES的未来实施。

著录项

  • 作者

    Naufel, Stephanie Naufel.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Biomedical engineering.;Neurosciences.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号