首页> 外文学位 >Engineering the ionic polymer/gas interfacial properties of a fuel cell catalyst layer and performance optimization of various reversible fuel cells
【24h】

Engineering the ionic polymer/gas interfacial properties of a fuel cell catalyst layer and performance optimization of various reversible fuel cells

机译:工程化燃料电池催化剂层的离子聚合物/气体界面特性以及各种可逆燃料电池的性能优化

获取原文
获取原文并翻译 | 示例

摘要

The primary barrier to full-scale commercialization of proton exchange membrane fuel cells (PEMFCs) is their inability to operate at high power density and energy efficiency. High power density operation is currently limited by high liquid water saturation levels in the cathode catalyst layer. Due to the wettability of the ionomer phase, water produced in the cathode catalyst layer wets the ionomer-gas interface and negatively impacts mass transport of oxygen to the catalyst reaction sites. Therefore, proper water management is vital for operating PEMFCs at high power density. Despite fuel cell water management improvements to membranes, gas diffusion layers, microporous layers, and flow field designs, developing and understanding water transport in the fuel cell catalyst layer continues to be an area of great importance. Previous approaches for improving water management in the catalyst layer resulted in more complicated designs and increased costs. The main objective of this doctoral work is to improve water management in a fuel cell cathode catalyst layer to enable a PEMFC to operate with increased power density and energy efficiency. The work involves (1) validating the hypothesis that specific heat treatment conditions lead to a hydrophobic or hydrophilic ionomer/gas interface, (2) developing a process to incorporate these conditions into the fabrication of the membrane electrode assembly (MEA), and (3) characterizing and testing the MEAs to confirm that the desired ionomer interfacial properties were achieved and that they led to improved fuel cell performance. XPS results confirm specific heat treatment conditions lead to a hydrophobic or hydrophilic ionomer interface. Fuel cell test results show that MEAs with hydrophobic ionomer/gas interfaces generate 133% more power over those with conventional MEAs.;The remainder of this doctoral work focuses on performance optimization of various reversible fuel cells, including the hydrogen-bromine (H2-Br2), hydrogen-iodine (H2-I2), and hydrogen-vanadium fuel cells. The H2-Br2 and H2-I2 reversible fuel cell systems can be operated in the acidic or alkaline modes. The alkaline versions were evaluated because of the advantages over the acidic systems such as higher cell potential, lower corrosivity, and lower catalyst cost for the hydrogen evolution and oxidation reactions. The results confirmed that the alkaline H2-Br2 and H2-I2 fuel cells have a higher cell voltage than their corresponding acidic systems while maintaining similarly fast electrode reaction kinetics. Hydrogen-vanadium reversible fuel cells were tested to determine the effect of operating and design variables, such as electrolyte flow rate, carbon electrode type, and membrane type and thickness, on the fuel cell performance. Higher performance was observed with higher vanadium flow rate, thinner membranes and carbon nanotube (CNT) vanadium electrode. Peak power density of greater than 540 mW/cm2 was obtained using a Nafion NR212 membrane and CNT vanadium electrode.;Finally, a new technique was developed to measure crossover rate in a hydrogen-vanadium reversible fuel cell. Vanadium crossover through the ion exchange membrane in vanadium-based redox flow battery systems results in self discharge and variations in electrolyte concentration. Measuring crossover of electrolyte species directly with a fuel cell, as compared to an idealized dual-chamber system, allows for determining diffusivity under actual fuel cell testing conditions. This new in-situ technique for measuring crossover with a fuel cell is shown to be reliable and easy to use. The crossover measurement method shows consistent results with diffusivities of ~10-7 cm2/s reported in the literature.
机译:质子交换膜燃料电池(PEMFC)大规模商业化的主要障碍是它们无法以高功率密度和能效运行。当前,高功率密度操作受到阴极催化剂层中高液体水饱和度的限制。由于离聚物相的可润湿性,在阴极催化剂层中产生的水润湿了离聚物-气体界面,并且不利地影响了氧气向催化剂反应部位的传质。因此,适当的水管理对于以高功率密度运行PEMFC至关重要。尽管对膜,气体扩散层,微孔层和流场设计进行了燃料电池水管理的改进,但是开发和理解燃料电池催化剂层中的水传输仍然是非常重要的领域。用于改善催化剂层中水管理的先前方法导致更复杂的设计和增加的成本。该博士工作的主要目的是改善燃料电池阴极催化剂层中的水管理,以使PEMFC能够以提高的功率密度和能效运行。该工作涉及(1)验证以下假设:特定的热处理条件会导致疏水性或亲水性离聚物/气体界面,(2)开发一种将这些条件并入膜电极组件(MEA)的过程,以及(3) )表征和测试MEA,以确认获得了所需的离聚物界面性能,并改善了燃料电池的性能。 XPS结果证实了特定的热处理条件会导致疏水或亲水离聚物界面。燃料电池测试结果表明,具有疏水离聚物/气体界面的MEA比传统MEA具有更高的133%功率;该博士研究的其余部分致力于优化各种可逆燃料电池的性能,包括氢溴(H2-Br2 ),氢碘(H2-I2)和氢钒燃料电池。 H2-Br2和H2-I2可逆燃料电池系统可以在酸性或碱性模式下运行。评估了碱性版本,因为它比酸性系统具有优势,例如具有更高的电池电势,更低的腐蚀性以及更低的用于析氢和氧化反应的催化剂成本。结果证实,碱性H2-Br2和H2-I2燃料电池比其相应的酸性系统具有更高的电池电压,同时保持了相似的快速电极反应动力学。对氢-钒可逆燃料电池进行了测试,以确定操作和设计变量(例如电解质流速,碳电极类型以及膜类型和厚度)对燃料电池性能的影响。更高的钒流速,更薄的膜和碳纳米管(CNT)钒电极观察到更高的性能。使用Nafion NR212膜和CNT钒电极获得的峰值功率密度大于540 mW / cm2。最后,开发了一种新技术来测量氢钒可逆燃料电池的交叉速率。在基于钒的氧化还原液流电池系统中,穿过离子交换膜的钒交叉导致自放电和电解质浓度变化。与理想化的双腔室系统相比,直接通过燃料电池测量电解质种类的交叉可确定实际燃料电池测试条件下的扩散率。这种用于测量与燃料电池交叉的新现场技术被证明是可靠且易于使用的。交叉测量方法显示出一致的结果,文献报道的扩散率为〜10-7 cm2 / s。

著录项

  • 作者

    Dowd, Regis P., Jr.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 359 p.
  • 总页数 359
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号