首页> 外文学位 >Independent Tuning Stiffness and Toughness of Polymer Metal Composites: Modeling, Validation, and Design.
【24h】

Independent Tuning Stiffness and Toughness of Polymer Metal Composites: Modeling, Validation, and Design.

机译:聚合物金属复合材料的独立调节刚度和韧性:建模,验证和设计。

获取原文
获取原文并翻译 | 示例

摘要

Titanium (Ti) alloys are one of the most used metals for biomedical applications, specifically in making implants. The stiffness of the dense Ti is 80-110 GPa, while the stiffness of the compact bone is 12-20 GPa. This high difference between the stiffness of the Ti alloys and compact bone results in stress shielding of the bone and stress concentration at the implant, both of which are undesirable and could result in implant failure. An alternative method to reduce the stiffness of a dense implant and avoid the stress shielding is adding porosity to the structure. This however results in considerable reduction in the toughness of the structure, which is also undesirable for the long-term success of implants. Also, implants such as knee and spine should have high fracture toughness, which is not achievable with porous structures.;In this work, we study a new method for independently tuning the stiffness and toughness of the material by adding various polymers to the additively manufactured Ti structures with engineered porosity. Porous Ti samples with different levels of porosity are fabricated using selective laser melting. Various types of thermoplastic polymers including High Density Polyethylene (HDPE), Polyethylene Terephthalate (PET), and Nylon (MXD6) are used to fill the pores to make the titanium-polymer composite parts. Compression simulations and tests are performed on both porous and composite specimens to compare the mechanical behavior of these structures. A set of finite element simulations is conducted on different structures, and the results are verified with experiments. Simulation results and experimental findings indicate that filling porous Ti with thermoplastic polymers leads to an increase in the toughness of the structure. The percentage increase of the toughness depends on several parameters such as the geometry of the porosity, the percentage of the porosity, and the type of the polymer. Also, a design algorithm is developed based on the simulation and experimental results. This design algorithm receives the desired level of mechanical properties such as desired stiffness and toughness. The algorithm then produces the desired percentage and morphology of porosity. It also recommends the type of the metal and polymer that should be used to create the composite with the desired mechanical properties. Our results pave the way for designing polymer-composite structures with independently tuneable stiffness and toughness for a broad range of applications.
机译:钛合金是生物医学应用中最常用的金属之一,特别是在制造植入物中。致密钛的刚度为80-110 GPa,而致密骨的刚度为12-20 GPa。 Ti合金的刚度和紧密的骨头之间的高差异导致骨头的应力屏蔽和植入物处的应力集中,这都是不希望的,并且可能导致植入物失效。降低致密植入物的刚度并避免应力屏蔽的另一种方法是在结构上增加孔隙率。然而,这导致结构的韧性大大降低,这对于植入物的长期成功也是不希望的。另外,膝盖和脊柱等植入物应具有较高的断裂韧性,这是多孔结构无法实现的。;在这项工作中,我们研究了一种通过在增材制造中添加各种聚合物来独立调节材料刚度和韧性的新方法。具有工程孔隙率的钛结构。使用选择性激光熔化技术可制造出具有不同孔隙率的多孔Ti样品。包括高密度聚乙烯(HDPE),聚对苯二甲酸乙二酯(PET)和尼龙(MXD6)在内的各种类型的热塑性聚合物用于填充孔,以制成钛聚合物复合部件。对多孔和复合材料样品进行压缩模拟和测试,以比较这些结构的机械性能。在不同的结构上进行了一组有限元模拟,并通过实验验证了结果。仿真结果和实验结果表明,用热塑性聚合物填充多孔Ti会导致结构韧性增加。韧性的增加百分比取决于几个参数,例如孔隙率的几何形状,孔隙率的百分比以及聚合物的类型。此外,基于仿真和实验结果,开发了一种设计算法。该设计算法可接收所需水平的机械性能,例如所需的刚度和韧性。该算法然后产生所需的孔隙率和形态。它还建议用于制造具有所需机械性能的复合材料的金属和聚合物类型。我们的结果为设计具有广泛用途的具有独立可调的刚度和韧性的聚合物复合结构铺平了道路。

著录项

  • 作者

    Nasr Esfahani, Sajedeh.;

  • 作者单位

    The University of Toledo.;

  • 授予单位 The University of Toledo.;
  • 学科 Mechanical engineering.;Materials science.
  • 学位 M.S.
  • 年度 2017
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号