首页> 外文学位 >Bright-field and fluorescence chip-scale microscopy for biological imaging.
【24h】

Bright-field and fluorescence chip-scale microscopy for biological imaging.

机译:用于生物成像的明场和荧光芯片级显微镜。

获取原文
获取原文并翻译 | 示例

摘要

Optical microscopy is an essential tool in biological science and one of the gold standards for medical examinations. Miniaturization of microscopes can be a crucial stepping stone towards realizing compact, cost-effective and portable platforms for biomedical research and healthcare. This thesis reports on implementations of bright-field and fluorescence chip-scale microscopes for a variety of biological imaging applications. The term "chip-scale microscopy" refers to lensless imaging techniques realized in the form of mass-producible semiconductor devices, which transforms the fundamental design of optical microscopes.;Our strategy for chip-scale microscopy involves utilization of low-cost Complementary metal Oxide Semiconductor (CMOS) image sensors, computational image processing and micro-fabricated structural components. First, the sub-pixel resolving optofluidic microscope (SROFM), will be presented, which combines microfluidics and pixel super-resolution image reconstruction to perform high-throughput imaging of fluidic samples, such as blood cells. We discuss design parameters and construction of the device, as well as the resulting images and the resolution of the device, which was 0.66 microm at the highest acuity. The potential applications of SROFM for clinical diagnosis of malaria in the resource-limited settings is discussed.;Next, the implementations of ePetri, a self-imaging Petri dish platform with microscopy resolution, are presented. Here, we simply place the sample of interest on the surface of the image sensor and capture the direct shadow images under the illumination. By taking advantage of the inherent motion of the microorganisms, we achieve high resolution (~1 microm) imaging and long term culture of motile microorganisms over ultra large field-of-view (5.7 mm x 4.4 mm) in a specialized ePetri platform. We apply the pixel super-resolution reconstruction to a set of low-resolution shadow images of the microorganisms as they move across the sensing area of an image sensor chip and render an improved resolution image. We perform longitudinal study of Euglena gracilis cultured in an ePetri platform and image based analysis on the motion and morphology of the cells. The ePetri device for imaging non-motile cells are also demonstrated, by using the sweeping illumination of a light emitting diode (LED) matrix for pixel super-resolution reconstruction of sub-pixel shifted shadow images. Using this prototype device, we demonstrate the detection of waterborne parasites for the effective diagnosis of enteric parasite infection in resource-limited settings.;Then, we demonstrate the adaptation of a smartphone's camera to function as a compact lensless microscope, which uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is also based on the image reconstruction with sweeping illumination technique, where the sequence of images are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.;Finally, we report on the implementation of fluorescence chip-scale microscope, based on a silo-filter structure fabricated on the pixel array of a CMOS image sensor. The extruded pixel design with metal walls between neighboring pixels successfully guides fluorescence emission through the thick absorptive filter to the photodiode layer of a pixel. Our silo-filter CMOS image sensor prototype achieves 13-microm resolution for fluorescence imaging over a wide field-of-view (4.8 mm x 4.4 mm). Here, we demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.
机译:光学显微镜是生物科学中必不可少的工具,也是医学检查的金标准之一。显微镜的小型化可能是实现用于生物医学研究和医疗保健的紧凑,经济高效的便携式平台的关键踏脚石。本文报道了用于各种生物成像应用的明场和荧光芯片级显微镜的实现。术语“芯片级显微镜”是指以可大量生产的半导体器件的形式实现的无透镜成像技术,该技术改变了光学显微镜的基本设计。;我们的芯片级显微镜策略涉及利用低成本的互补金属氧化物半导体(CMOS)图像传感器,计算图像处理和微型结构部件。首先,将介绍亚像素分辨光流体显微镜(SROFM),它结合了微流体技术和像素超分辨率图像重建功能,可以对流体样本(例如血细胞)进行高通量成像。我们讨论了设备的设计参数和构造,以及所得到的图像和设备的分辨率,最高灵敏度为0.66微米。讨论了在资源有限的环境中SROFM在疟疾临床诊断中的潜在应用。接下来,介绍了具有显微镜分辨率的自成像皮氏培养皿平台ePetri的实现。在这里,我们只是将感兴趣的样本放在图像传感器的表面上,并在光照下捕获直接阴影图像。通过利用微生物的固有运动,我们可以在专用的ePetri平台上通过超大视野(5.7 mm x 4.4 mm)实现高分辨率(〜1微米)成像和运动微生物的长期培养。当微生物在图像传感器芯片的感应区域上移动并渲染分辨率提高的图像时,我们将像素超分辨率重建应用于一组低分辨率的微生物阴影图像。我们进行了在ePetri平台上培养的Euglena gracilis的纵向研究,并基于图像分析了细胞的运动和形态。通过使用发光二极管(LED)矩阵的扫光照明来对子像素移动的阴影图像进行像素超分辨率重建,还展示了用于对非运动细胞进行成像的ePetri设备。使用此原型设备,我们演示了在资源有限的环境中检测水性寄生虫以有效诊断肠寄生虫感染的方法;然后,我们演示了智能手机相机的适应性,使其可以用作紧凑型无透镜显微镜,并使用环境照明它的光源,不需要包含专用光源。该方法还基于具有扫描照明技术的图像重建,其中当用户手动将设备围绕任何环境光源(例如太阳或灯)倾斜时,会捕获图像序列。使用定制的android应用程序在设备上执行图像获取和重建,从而为现场应用程序构建独立的成像设备。我们讨论了使用商用智能手机的设备构造并演示了我们系统的成像功能。最后,我们报告了基于在CMOS像素阵列上制造的筒仓滤光片结构的荧光芯片级显微镜的实现情况。图像传感器。相邻像素之间具有金属壁的挤压像素设计成功地将荧光发射通过厚的吸收性滤光片引导到像素的光电二极管层。我们的筒仓式CMOS图像传感器原型在宽视场(4.8 mm x 4.4 mm)上实现了13微米分辨率的荧光成像。在这里,我们展示了紧凑,低成本配置中活细胞的明场和荧光纵向成像。

著录项

  • 作者

    Lee, Seung Ah.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Biomedical engineering.;Electrical engineering.;Optics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号