首页> 外文学位 >Refined computational modeling of SOFCs degradation due to trace impurities in coal syngas.
【24h】

Refined computational modeling of SOFCs degradation due to trace impurities in coal syngas.

机译:由于煤合成气中存在微量杂质而导致SOFC降解的精细计算模型。

获取原文
获取原文并翻译 | 示例

摘要

The Solid Oxide Fuel Cell (SOFC) is a good alternative for clean and efficient power generation. These cells can be operated directly on a wide variety of fuels including biogas, hydrocarbon fuels and synthesized coal gas (syngas), which is a promising avenue for utilization of coal with much less environmental impact. One of the challenges in this technology is poisoning of SOFC anodes by trace impurities contained in coal syngas. One such impurity, phosphine is known to cause catastrophic failure of SOFC anode even at <10ppm concentrations. Fuel impurity degradation patterns can vary by different operating conditions such as humidity, applied current, temperature and anode thickness.;In the present study, more detailed models are developed to predict the typical degradation behaviors observed in SOFC anode due to phosphine by extension of an in-house one-dimensional computational code. This model is first used to predict the effect of steam concentration on phosphine induced degradation in anode supported SOFCs. The model is refined based on the experimental observation, which indicate that the phosphine degradation is less severe in the absence of steam. Simulations results showed good agreement with experimental data. Then, a sensitivity analysis, using dual numbers automatic differentiation (DNAD) is performed to investigate the influence of empirical model parameters on model outputs, electrical potential, ohmic and polarization losses. Further, the refined one-dimensional model is extended to a three-dimensional model to study the phosphine induced performance degradation in relatively large planar cells operating on hydrogen fuel. The empirical model parameters are calibrated using button cell experiments and sensitivity analysis as a guide. These parameters are then used in planar cell simulations. The results from the three dimensional model show that the contaminant coverage of nickel and fuel distribution inside the anode is highly non-uniform. These non-uniform distributions are caused by the geometrical alignment of gas channels and current collectors, as well as the variation of gas concentration along the flow direction. The non-uniform deactivation of anode gave rise to the altering of current distribution inside the planar cell such that the cell can still produce current even when some regions of the anode are partially inactive. In addition, to assess the overall cell performance at any given degradation stage, additional simulations are performed to evaluate the electrochemical behavior (polarization and impedance) of the cell. The simulation results are assessed in comparison to experimental observation whenever possible. Finally, a physics based transport model for nickel migration is formulated based on experimentally observed elemental redistribution in a SOFC anode and it is integrated into refined one-dimensional phosphine degradation code. Simulations show that the proposed mechanism of Ni diffusion driven by secondary phase formation, the electrical force, and humidity can explain the experimentally observed accumulation of Ni and secondary phases on the SOFC anode surface.;Keywords: Keywords: Solid Oxide Fuel Cells, Contaminant Degradation, Automatic differentiation, Sensitivity Analysis, Impedance, Polarization, Nickel migration, Electro-migration..
机译:固体氧化物燃料电池(SOFC)是清洁高效发电的良好替代方案。这些电池可以直接在包括沼气,碳氢燃料和合成煤气(合成气)在内的多种燃料上运行,这是利用煤而对环境影响较小的有前途的途径。该技术的挑战之一是煤合成气中所含的微量杂质会污染SOFC阳极。已知一种这样的杂质膦即使在浓度小于10ppm时也会导致SOFC阳极的灾难性故障。燃料杂质的降解方式会因不同的运行条件而变化,例如湿度,施加的电流,温度和阳极厚度。;在本研究中,开发了更详细的模型来预测由于磷化氢的扩展而在SOFC阳极中观察到的典型降解行为。内部一维计算代码。该模型首先用于预测蒸汽浓度对阳极负载的SOFC中膦诱导的降解的影响。根据实验观察结果对模型进行了改进,表明在没有蒸汽的情况下,膦的降解不那么严重。仿真结果与实验数据吻合良好。然后,使用双数自动微分(DNAD)进行灵敏度分析,以研究经验模型参数对模型输出,电势,欧姆和极化损耗的影响。此外,将改进的一维模型扩展为三维模型,以研究磷化氢在相对较大的以氢为燃料的平面电池中引起的性能下降。使用纽扣电池实验和灵敏度分析作为指导来校准经验模型参数。然后将这些参数用于平面单元仿真。三维模型的结果表明,镍的污染物覆盖率和阳极内部的燃料分布高度不均匀。这些不均匀的分布是由气体通道和集电器的几何排列以及气体浓度沿流动方向的变化引起的。阳极的不均匀失活引起平面电池内部电流分布的改变,从而即使当阳极的某些区域部分不活动时,电池仍然可以产生电流。此外,为了评估在任何给定降解阶段的整体电池性能,还执行了其他模拟来评估电池的电化学行为(极化和阻抗)。尽可能将仿真结果与实验观察结果进行比较。最后,基于在SOFC阳极中实验观察到的元素再分布,制定了基于物理机理的镍迁移运移模型,并将其集成到精炼的一维膦降解代码中。仿真结果表明,所提出的由二次相形成,电力和湿度驱动的Ni扩散机理可以解释实验观察到的SOFC阳极表面上Ni和二次相的积累。关键词:固体氧化物燃料电池污染物降解,自动微分,灵敏度分析,阻抗,极化,镍迁移,电迁移。

著录项

  • 作者

    Sezer, Hayri.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Mechanical engineering.;Mathematics.;Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号