首页> 外文学位 >Experimental Study of the Effects of Nanosecond-Pulsed Non-equilibrium Plasmas on Low-Pressure, Laminar, Premixed Flames.
【24h】

Experimental Study of the Effects of Nanosecond-Pulsed Non-equilibrium Plasmas on Low-Pressure, Laminar, Premixed Flames.

机译:纳秒脉冲非平衡等离子体对低压层流预混火焰影响的实验研究。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, the effects of nanosecond, repetitively-pulsed, non-equilibrium plasma discharges on laminar, low-pressure, premixed burner-stabilized hydrogen/O2/N2 and hydrocarbon/O2/N 2 flames is investigated using optical and laser-based diagnostics and kinetic modeling. Two different plasma sources, both of which generate uniform, low-temperature, volumetric, non-equilibrium plasma discharges, are used to study changes in temperature and radical species concentrations when non-equilibrium plasmas are directly coupled to conventional hydrogen/hydrocarbon oxidation and combustion chemistry. Emission spectroscopy measurements demonstrate number densities of excited state species such as OH*, CH*, and C2* increase considerably in the presence of the plasma, especially under lean flame conditions. Direct imaging indicates that during plasma discharge, lean hydrocarbon flames "move" upstream towards burner surface as indicated by a shift in the flame chemiluminescence. In addition, the flame chemiluminescence zones broaden. For the same plasma discharge and flame conditions, quantitative results using spatially-resolved OH laser-induced fluorescence (LIF), multiline, OH LIF-thermometry, and O-atom two-photon laser-induced fluorescence (TALIF) show significant increases in ground-state OH and O concentrations in the preheating zones of the flame. More specifically, for a particular axial position downstream of the burner surface, the OH and O concentrations increase, which can be viewed as an effective "shift" of the OH and O profiles towards the burner surface. Conceivably, the increase in OH and O concentration is due to an enhancement of the lower-temperature kinetics including O-atom, H-atom and OH formation kinetics and temperature increase due to the presence of the low-temperature, non-equilibrium plasma. High-fidelity kinetic modeling demonstrates that the electric discharge generates significant amounts of O and possibly H atoms via direct electron impact, as well as quenching of excited species rather than pure thermal effect which is caused by Joule heating within the plasma. These processes accelerate chain-initiation and chain-branching reactions at low temperatures (i.e. in the preheat region upstream of the primary reaction zone in the present burner-stabilized flames) yielding increased levels of O, H, and OH. The effects of the plasma become more pronounced as the equivalence ratio is reduced which strongly suggest that the observed effect is due to plasma chemical processes (i.e. enhanced radical production) rather than Joule heating supports the kinetic modeling.
机译:本文研究了基于光学和激光的纳秒级重复脉冲非平衡等离子体放电对层流,低压,预混合燃烧器稳定的氢气/ O2 / N2和碳氢化合物/ O2 / N 2火焰的影响。诊断和动力学建模。当非平衡等离子体直接与常规的氢/碳氢化合物氧化和燃烧耦合时,使用两种不同的等离子体源(均会产生均匀的,低温的,体积的,非平衡的等离子体放电)来研究温度和自由基种类浓度的变化。化学。发射光谱测量表明,在等离子体存在下,尤其是在稀薄火焰条件下,激发态物质(例如OH *,CH *和C2 *)的数量密度显着增加。直接成像表明,在等离子放电期间,稀薄碳氢化合物火焰向上游“朝燃烧器表面移动”,如火焰化学发光的变化所指示。另外,火焰化学发光区变宽。对于相同的等离子体放电和火焰条件,使用空间分辨的OH激光诱导的荧光(LIF),多线,OH LIF温度计和O原子两光子激光诱导的荧光(TALIF)进行定量分析,结果表明地面显着增加火焰的预热区中的OH和O浓度处于稳态。更具体地说,对于燃烧器表面下游的特定轴向位置,OH和O浓度增加,这可以看作是OH和O轮廓朝燃烧器表面的有效“偏移”。可以想见,OH和O浓度的增加是由于包括O-原子,H-原子和OH的形成动力学的低温动力学的增强和由于存在低温,非平衡等离子体而引起的温度升高。高保真动力学建模表明,放电通过直接的电子撞击以及受激物种的猝灭而不是由等离子体内的焦耳热引起的纯热效应,会产生大量的O和可能的H原子。这些过程在低温下(即在本燃烧器稳定的火焰中主反应区上游的预热区中)加速链引发和链支化反应,产生增加水平的O,H和OH。当当量比降低时,等离子体的影响变得更加明显,这强烈表明观察到的效应是由于等离子体的化学过程(即增强的自由基产生)而不是焦耳热支持了动力学建模。

著录项

  • 作者

    Li, Ting.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号