首页> 外文学位 >Field-Induced Point Defect Redistribution in Metal Oxides: Mesoscopic Length Scale Phenomena.
【24h】

Field-Induced Point Defect Redistribution in Metal Oxides: Mesoscopic Length Scale Phenomena.

机译:场致金属氧化物中的点缺陷再分布:介观长度尺度现象。

获取原文
获取原文并翻译 | 示例

摘要

The spatial redistribution of charged point defects under direct-current (DC) biasing can have significant implications for electroceramic device performance and lifetime. The transport behavior of point defects is regulated by the boundary conditions of the electrodes, which can block electronic charge and/or ion transfer across the interface to varying degrees. When the electrodes are impermeable to mass transport, there will be an accumulation of point defects in the near-electrode region that can lead to significant modifications in the local electronic carrier concentrations. Such defect redistribution is responsible for the long-term increases in leakage current in many capacitor devices via modification of the interface Schottky barrier at the reverse-biased cathode.;While this leakage current enhancement is detrimental in capacitor devices, the phenomenon of lattice defect migration can be utilized to form novel functional behaviors, such as resistive switching in metal-oxides via modulation of the Schottky barrier or formation of nonstoichiometric filaments oriented along the applied field direction.;The present work aims to understand the phenomenon of defect redistribution as a function of the initial defect chemistry state and electrode boundary conditions under the degradation process, using single-crystal rutile TiO 2 as a model material. Experiments are performed as a function of degradation voltage and crystallographic orientation since the self-diffusion coefficients of oxygen vacancies and titanium interstitials are known to be highly anisotropic in rutile.;Rutile single crystals are equilibrated at specific oxygen partial pressures and temperatures to define the initial defect chemistry state. Platinum electrodes, which form Schottky contacts and are largely impermeable to oxygen transfer, are deposited on opposite faces of the crystal. The samples are then subjected to up to 200 V/cm electric field at 200¢ªC while the leakage current is continuously monitored. To understand spatial variations in chemistry and possible changes in microstructure, we utilize a combination of cathodoluminescence spectroscopy (CL), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). After electrical degradation, correlating electrical characterization measurements with electron microscopy analyses provides insight into the redistribution of point defects as a function of electric field and time.;Diode-like rectification behavior was observed in crystals subjected to an applied voltage in the low electric field regime (< 75V/cm). One-dimensional and homogenous defect redistribution along both and results in accumulation of point defects and the formation of highly reduced substoichiometric regions near the cathode, which leads to the Schottky barrier degradation. The CL spectroscopy shows that titanium interstitials dominate the point defect redistribution process in this region. The reversibility of the rectification behavior, examined for both crystallographic directions, shows that the process can be influenced by the anisotropy of rutile. At degradation fields on the order of 56 V/cm at 200°C, although the degradation of Schottky barrier is mostly reversible along , formation of extended structural defects is not recovered during the application of a reverse bias and results in an irreversible rectification behavior along direction.;We also identify electric field regimes (> 175 V/cm) in which the concentrations of point defects become large enough to induce higher-dimensional defects such as dislocations and the formation of Magneli phases. We find that the condensation of point defects into Magneli phases at the electrodes depletes point defect concentration in the bulk, thus increasing the bulk resistivity. The Magneli phases formed near the cathode are found to be stable, and not reversible, at 200°C for the times and fields studied. The defect condensation processes have significant impacts on the overall I-V behavior of the material and the ability to switch the total resistance.;The electroformation of conductive filaments, another dominant degradation mechanism, is observed on samples with slightly higher initial bulk resistivity (about 80 O.cm) at field levels as low as 150 V/cm. The redistribution of ionic carriers leads to heterogeneity in the chemistry of TiO2 in the form of nonstoichiometric filaments oriented along the applied field direction. The CL spectra taken from conductive filaments and nonfilaments regions indicate a noticeable increase in the concentration of the titanium interstitials of the filaments. We demonstrate that the filaments can be disconnected from the electrodes with subsequent reverse-polarity biasing, demonstrating switching on a macroscopic crystal.;This work was supported by the National Science Foundation under grant number DMR-1132058.
机译:直流电(DC)偏压下带电点缺陷的空间重新分布可能会对电瓷器件的性能和寿命产生重大影响。点缺陷的传输行为受电极边界条件的调节,这会在不同程度上阻止电子电荷和/或离子在界面上的转移。当电极对于质量传输不可渗透时,在近电极区域中将积累点缺陷,这可能导致局部电子载流子浓度发生重大变化。通过修改反向偏置阴极处的肖特基势垒,这种缺陷的重新分布导致了许多电容器器件中漏电流的长期增加。虽然这种漏电流的增加对电容器器件不利,但晶格缺陷迁移现象可用于形成新颖的功能行为,例如通过调制肖特基势垒或形成沿所施加场方向定向的非化学计量丝形成金属氧化物中的电阻性开关。本工作旨在了解缺陷重新分布现象的功能单晶金红石型TiO 2为模型材料,研究了降解过程中的初始缺陷化学状态和电极边界条件。由于氧空位和钛间隙的自扩散系数在金红石中是高度各向异性的,因此实验是根据降解电压和晶体学取向进行的;在特定的氧分压和温度下,将金红石单晶平衡以定义初始缺陷化学状态。形成肖特基接触并且不透氧的铂电极沉积在晶体的相对面上。然后,在不断监测漏电流的同时,将样品在200°C的温度下承受高达200 V / cm的电场。为了了解化学的空间变化和微观结构可能的变化,我们利用了阴极发光光谱(CL),透射电子显微镜(TEM)和电子能量损失光谱(EELS)的组合。电降解之后,将电特性测量结果与电子显微镜分析相关联,可以洞悉点缺陷随电场和时间的重新分布。在低电场条件下,在施加电压的晶体中观察到类似二极管的整流行为(<75V / cm)。沿两者的一维和均匀的缺陷重新分布,并导致点缺陷的累积和在阴极附近形成高度还原的亚化学计量的区域,从而导致肖特基势垒退化。 CL光谱表明,钛间隙在该区域的点缺陷重新分布过程中起主导作用。在两个晶体学方向上检验的整流行为的可逆性表明,该过程可能受到金红石各向异性的影响。在200°C下约56 V / cm的退化场上,尽管肖特基势垒的退化大部分是可逆的,但在施加反向偏压的过程中扩展结构缺陷的形成并没有恢复,并导致了不可逆的整流行为。我们还确定了电场状态(> 175 V / cm),其中点缺陷的浓度变得足够大,足以诱发更高尺寸的缺陷,例如位错和Magneli相的形成。我们发现电极上的点缺陷凝结成Magneli相会耗尽体中的点缺陷浓度,从而增加体电阻率。发现在所研究的时间和电场下,在阴极附近形成的马涅利相在200°C下稳定且不可逆。缺陷凝结过程对材料的整体IV行为和切换总电阻的能力有重大影响。;在初始体电阻率稍高(约80 O)的样品上观察到导电丝的电形成是另一种主要的降解机理低至150 V / cm。离子载体的重新分布会导致TiO2化学上的异质性,其形式为沿所施加电场方向取向的非化学计量长丝。从导电丝和非丝区域获得的CL光谱表明,丝的钛间隙的浓度显着增加。我们证明了可以通过随后的反极性偏压将细丝从电极上断开,证明了在宏观晶体上的切换。;这项工作得到了美国国家科学基金会的支持,授权号为DMR-1132058。

著录项

  • 作者

    Moballegh, Ali.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号