首页> 外文学位 >Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight.
【24h】

Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight.

机译:利用优化设计变形机翼结构来增强飞行效果。

获取原文
获取原文并翻译 | 示例

摘要

Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.
机译:传统的飞机操纵面会限制可操纵性。这项工作是一项综合性研究,着眼于智能材料和常规致动方法,以实现机翼扭曲,从而以最小的致动能量潜在地提高飞行能力,同时在空气动力载荷下允许机翼变形最小。为了减少阻力,同时使用连续的机翼,使飞机在徘徊时更接近鸟类所使用的机翼变形。这项工作的变形机翼由一个由下层桁架结构支撑的蒙皮组成,该蒙皮的目标是使用比常规控制表面更少的驱动能量来获得给定的侧倾力矩。编写了结构优化代码,以便在气动载荷下实现最小的机翼变形,同时允许在致动下机翼扭转。用于优化的多目标成本函数包括以下各项:确保在气动载荷下的较小变形,机翼扭转期间机翼形状的较小变化,机翼扭转沿机翼长度的线性变化,与所需机翼扭转的偏差小,最小数量的桁架构件,最小的机翼重量和最小的驱动能量。液压缸和由直流电动机驱动的两件式连杆机构分别进行测试以提供促动。由于当前工作的目标只是提供侧倾力矩,因此沿机翼跨度仅安装一个执行器。优化还用于在执行器的桁架结构中找到最佳位置。然后将通过优化产生的主动结构与其他研究人员的模拟和实验结果以及常规飞机的特性进行比较。

著录项

  • 作者

    Detrick, Matthew Scott.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Mechanical engineering.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号