首页> 外文学位 >The role of molecular motors in the mechanics of active gels and the effects of inertia, hydrodynamic interaction and compressibility in passive microrheology.
【24h】

The role of molecular motors in the mechanics of active gels and the effects of inertia, hydrodynamic interaction and compressibility in passive microrheology.

机译:分子马达在活性凝胶力学中的作用以及被动微流变学中的惯性,流体动力相互作用和可压缩性的影响。

获取原文
获取原文并翻译 | 示例

摘要

The mechanical properties of soft biological materials are essential to their physiological function and cannot easily be duplicated by synthetic materials. The study of the mechanical properties of biological materials has lead to the development of new rheological characterization techniques. In the technique called passive microbead rheology, the positional autocorrelation function of a micron-sized bead embedded in a viscoelastic fluid is used to infer the dynamic modulus of the fluid. Single particle microrheology is limited to fluids were the microstructure is much smaller than the size of the probe bead. To overcome this limitation in two-bead microrheology the cross-correlated thermal motion of pairs of tracer particles is used to determine the dynamic modulus. Here we present a time-domain data analysis methodology and generalized Brownian dynamics simulations to examine the effects of inertia, hydrodynamic interaction, compressibility and non-conservative forces in passive microrheology. A type of biological material that has proven specially challenging to characterize are active gels. They are formed by semiflexible polymer filaments driven by motor proteins that convert chemical energy from the hydrolysis of adenosine triphosphate (ATP) to mechanical work and motion. Active gels perform essential functions in living tissue. Here we introduce a single-chain mean-field model to describe the mechanical properties of active gels. We model the semiflexible filaments as bead-spring chains and the molecular motors are accounted for by using a mean-field approach. The level of description of the model includes the end-to-end length and attachment state of the filaments, and the motor-generated forces, as stochastic state variables which evolve according to a proposed differential Chapman-Kolmogorov equation. The model allows accounting for physics that are not available in models that have been postulated on coarser levels of description. Moreover it allows the prediction of observables at time scales that will be too difficult to achieve in multi-chain simulations.
机译:软生物材料的机械性能对其生理功能至关重要,因此合成材料无法轻松复制。对生物材料力学性能的研究导致了新的流变表征技术的发展。在称为被动微珠流变学的技术中,嵌入在粘弹性流体中的微米大小的珠的位置自相关函数用于推断流体的动态模量。单颗粒微流变学仅限于流体,其微观结构远小于探针珠的大小。为了克服双珠微流变学中的这一限制,使用成对的示踪剂颗粒对的相互关联的热运动来确定动态模量。在这里,我们提出了一种时域数据分析方法和广义的布朗动力学模拟,以检验惯性,流体动力相互作用,可压缩性和非保守力在被动微流变学中的影响。活性凝胶是一种已证明特别具有挑战性的生物材料。它们由运动蛋白驱动的半柔性聚合物长丝形成,该蛋白将三磷酸腺苷水解(ATP)的化学能转化为机械功和运动。活性凝胶在活组织中起重要作用。在这里,我们介绍一个单链平均场模型来描述活性凝胶的机械性能。我们将半柔性细丝建模为珠弹簧链,并通过使用平均场方法考虑分子马达。模型的描述级别包括细丝的端到端长度和附着状态,以及电动机产生的力,它们是根据拟议的Chapman-Kolmogorov差分方程演化的随机状态变量。该模型允许考虑在较粗略的描述层次上假设的模型中不可用的物理现象。此外,它还可以在多链仿真中难以实现的时间尺度上预测可观察物。

著录项

  • 作者

    Uribe, Andres Cordoba.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Chemical engineering.;Biophysics.;Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 243 p.
  • 总页数 243
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号