首页> 外文学位 >Convective Heat Transfer with and without Film Cooling in High Temperature, Fuel Rich and Lean Environments.
【24h】

Convective Heat Transfer with and without Film Cooling in High Temperature, Fuel Rich and Lean Environments.

机译:在高温,燃料丰富和稀薄环境中,有和没有膜冷却的对流换热。

获取原文
获取原文并翻译 | 示例

摘要

Modern turbine engines require high turbine inlet temperatures and pressures to maximize thermal efficiency. Increasing the turbine inlet temperature drives higher heat loads on the turbine surfaces. In addition, increasing pressure ratio increases the turbine coolant temperature such that the ability to remove heat decreases. As a result, highly effective external film cooling is required to reduce the heat transfer to turbine surfaces. Testing of film cooling on engine hardware at engine temperatures and pressures can be exceedingly difficult and expensive. Thus, modern studies of film cooling are often performed at near ambient conditions. However, these studies are missing an important aspect in their characterization of film cooling effectiveness. Namely, they do not model effect of thermal property variations that occur within the boundary and film cooling layers at engine conditions. Also, turbine surfaces can experience significant radiative heat transfer that is not trivial to estimate analytically.;The present research first computationally examines the effect of large temperature variations on a turbulent boundary layer. Subsequently, a method to model the effect of large temperature variations within a turbulent boundary layer in an environment coupled with significant radiative heat transfer is proposed and experimentally validated. Next, a method to scale turbine cooling from ambient to engine conditions via non-dimensional matching is developed computationally and the experimentally validated at combustion temperatures.;Increasing engine efficiency and thrust to weight ratio demands have driven increased combustor fuel-air ratios. Increased fuel-air ratios increase the possibility of unburned fuel species entering the turbine. Alternatively, advanced ultra-compact combustor designs have been proposed to decrease combustor length, increase thrust, or generate power for directed energy weapons. However, the ultra-compact combustor design requires a film cooled vane within the combustor. In both these environments, the unburned fuel in the core flow encounters the oxidizer rich film cooling stream, combusts, and can locally heat the turbine surface rather than the intended cooling of the surface. Accordingly, a method to quantify film cooling performance in a fuel rich environment is prescribed. Finally, a method to film cool in a fuel rich environment is experimentally demonstrated.
机译:现代涡轮发动机需要较高的涡轮入口温度和压力,以使热效率最大化。涡轮进口温度的升高会在涡轮表面上产生更高的热负荷。此外,增加压力比会增加涡轮冷却液温度,从而降低散热能力。结果,需要高效的外部薄膜冷却以减少向涡轮机表面的热传递。在发动机温度和压力下在发动机硬件上测试薄膜冷却可能非常困难且昂贵。因此,薄膜冷却的现代研究通常在接近环境条件下进行。但是,这些研究在表征薄膜冷却效果方面缺少重要方面。即,它们不对在发动机条件下在边界层和膜冷却层内发生的热特性变化的影响进行建模。而且,涡轮机表面可能会经历大量的辐射传热,而分析上的估算绝非易事。;本研究首先通过计算研究了大的温度变化对湍流边界层的影响。随后,提出了一种对环境中湍流边界层内大温度变化的影响进行建模并结合大量辐射传热的方法,并进行了实验验证。接下来,通过计算开发了一种通过无量纲匹配将涡轮机冷却从周围环境扩展到发动机工况的方法,并在燃烧温度下进行了实验验证。增加发动机效率和推力重量比要求推动了燃烧室燃料-空气比的提高。增加的燃料空气比增加了未燃烧燃料进入涡轮机的可能性。可替代地,已经提出了先进的超紧凑型燃烧器设计,以减小燃烧器的长度,增加推力或为定向能量武器发电。但是,超紧凑型燃烧器的设计要求燃烧器内的薄膜冷却叶片。在这两种环境中,堆芯流中未燃烧的燃料会遇到富氧化剂膜冷却流,燃烧并会局部加热涡轮机表面,而不是表面的预期冷却。因此,提出了量化燃料丰富环境中的膜冷却性能的方法。最后,实验证明了在富燃料环境中冷却薄膜的方法。

著录项

  • 作者

    Greiner, Nathan J.;

  • 作者单位

    Air Force Institute of Technology.;

  • 授予单位 Air Force Institute of Technology.;
  • 学科 Aerospace engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 432 p.
  • 总页数 432
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号