首页> 外文学位 >Sparse estimation of high-dimensional covariance matrices.
【24h】

Sparse estimation of high-dimensional covariance matrices.

机译:高维协方差矩阵的稀疏估计。

获取原文
获取原文并翻译 | 示例

摘要

This thesis develops methodology and asymptotic analysis for sparse estimators of the covariance matrix and the inverse covariance (concentration) matrix in high-dimensional settings. We propose estimators that are invariant to the ordering of the variables and estimators that exploit variable ordering.;For the estimators that are invariant to the ordering of the variables, estimation is based on both lasso-type penalized normal likelihood and a new proposed class of generalized thresholding operators which combine thresholding with shrinkage applied to the entries of the sample covariance matrix. For both approaches we obtain explicit convergence rates in matrix norms that show the trade-off between the sparsity of the true model, dimension, and the sample size. In addition, we show that the generalized thresholding approach estimates true zeros as zeros with probability tending to 1, and is sign consistent for non-zero elements. We also derive a fast iterative algorithm for computing the penalized likelihood estimator.;To exploit a natural ordering of the variables to estimate the covariance matrix, we propose a new regression interpretation of the Cholesky factor of the covariance matrix, as opposed to the well known regression interpretation of the Cholesky factor of the inverse covariance, which leads to a new class of regularized covariance estimators suitable for high-dimensional problems. We also establish theoretical connections between banding Cholesky factors of the covariance matrix and its inverse and constrained maximum likelihood estimation under the banding constraint.;These covariance estimators are compared to other estimators on simulated data and on real data examples from gene microarray experiments and remote sensing.;Lastly, we propose a procedure for constructing a sparse estimator of a multivariate regression coefficient matrix that accounts for correlation of the response variables. An efficient optimization algorithm and a fast approximation are developed and we show that the proposed method outperforms relevant competitors when the responses are highly correlated. We also apply the new method to a finance example on predicting asset returns.
机译:本文针对高维环境下协方差矩阵和逆协方差(浓度)矩阵的稀疏估计,建立了方法论和渐近分析。我们提出了与变量排序无关的估计量和利用变量排序的估计量;对于不变于变量排序的估计量,估计是基于套索型惩罚正态似然和新提出的广义阈值运算符,它将阈值与收缩相结合,应用于样本协方差矩阵的条目。对于这两种方法,我们都在矩阵范数中获得了明确的收敛速度,该收敛速度表明了真实模型,维度和样本量的稀疏性之间的权衡。此外,我们证明了广义阈值化方法将真零估计为零,概率为1,并且对于非零元素是符号一致的。我们还导出了一种快速的迭代算法来计算惩罚似然估计器。为了利用变量的自然排序来估计协方差矩阵,我们提出了对协方差矩阵的Cholesky因子的新回归解释,这与众所周知的相反逆协方差的Cholesky因子的回归解释,这导致了适用于高维问题的一类新的正则化协方差估计器。我们还建立了带状约束条件下协方差矩阵的带状Cholesky因子与其逆和约束最大似然估计之间的理论联系。这些协方差估计器在模拟数据以及基因芯片实验和遥感的实际数据示例中与其他估计器进行了比较最后,我们提出了一种构造多元回归系数矩阵的稀疏估计量的程序,该矩阵考虑了响应变量的相关性。提出了一种高效的优化算法和一种快速逼近算法,结果表明,当响应高度相关时,所提出的方法优于相关竞争对手。我们还将新方法应用于预测资产收益的财务示例。

著录项

  • 作者

    Rothman, Adam J.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 98 p.
  • 总页数 98
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号